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Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 
infection typically presents with fever and respiratory symptoms, which can 
progress to severe respiratory distress syndrome and multiple organ failure. In 
severe cases, these complications may even lead to death. One of the causes of 
COVID-19 deaths is the cytokine storm caused by an overactive immune res-
ponse. Therefore, suppressing the overactive immune response may be an effec-
tive strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their 
derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory 
functions, regenerative repair, and antifibrotic effects, promising an effective tool 
in treating COVID-19. In this paper, we review the main mechanisms and po-
tential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize 
relevant recent clinical trials, including the source of cells, the dosage and the 
efficacy, and the clinical value and problems in this field, providing more 
theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment 
of COVID-19.
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Core Tip: As the coronavirus disease 2019 (COVID-19) pandemic normalizes, developing efficient treatments is critical to 
reducing the strain on the healthcare system. We summarize the various current treatments for COVID-19 and the 
mechanisms of damage caused by severe acute respiratory syndrome coronavirus 2. Through the comparison to existing 
treatments, we find that stem cell therapy has more research value. Mesenchymal stem cells (MSC) and their derived 
exosomes (MSC-Exo) have homing, immunomodulatory, and tissue repair abilities. They can reduce lung injury and inhibit 
pulmonary fibrosis. We summarized the clinical trials in recent years, analyzed the safety and effectiveness of MSC and 
MSC-Exo treatment from various aspects such as mechanism of action and therapeutic effect, and provided substantial 
theoretical support for their clinical application.
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INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped, positive-single-stranded genomic RNA 
virus[1]. The coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 infection spread rapidly worldwide. 
Droplets mainly transmit COVID-19, and infected individuals can show mild to severe symptoms of respiratory diseases, 
such as fever, cough, malaise, dyspnea, etc. Some infected individuals may have clinical symptoms such as muscle pain, 
headache, loss of smell or taste, expectoration, diarrhea, etc. In severe cases, patients may develop pneumonia and 
respiratory failure, and even lead to death[2]. Recent findings highlight that multiple COVID-19 infections significantly 
increase the risks associated with mortality, length of hospital care, and enduring complications in various organ systems 
during both the immediate and long-term recovery phases[3], underscores the persistent health risk of COVID-19, 
exacerbated by the lack of comprehensive, effective treatments. However, numerous research institutions believe there is 
still hope for ending the pandemic. Contemporary therapeutic strategies against COVID-19 predominantly fall into two 
categories: One includes the host’s reaction to infection, encompassing treatment of inflammation, thrombosis, acute 
respiratory distress syndrome (ARDS), and modulation of the renin-angiotensin-aldosterone system; the other involves 
direct actions against the virus, including the use of antiviral drugs, recovery plasma, and antibody therapies[4]. In 
addition, in some countries and communities, traditional herbs and vitamins, among other health supplements, are 
commonly used to tackle COVID-19[5]. Despite the widespread adoption of these treatment methods, they still have their 
limitations. Here, we have compared the various treatment approaches for COVID-19 (Table 1). The comparison in 
Table 1 demonstrates that stem cell therapy shows greater research potential and therapeutic value compared to existing 
treatment options.

Mesenchymal stem cells (MSCs) are distinguished by their intrinsic capacity for self-renewal and the ability to differ-
entiate in multiple directions. As pluripotent stem cells, they have the potential to slow aging and restore balance to 
organs affected by trauma, or various pathological conditions[6]. MSCs effectively regulate immune responses in clinical 
research settings, as demonstrated in both animal models and human clinical trials. The application of MSCs is vital in 
mitigating hyperactive immune reactions and repairing pathological damage[7]. A significant aspect of the therapeutic 
mechanism of MSCs involves MSC-derived exosomes (MSCs-Exo), classified as a specific category of paracrine 
extracellular vesicles[8]. These exosomes encapsulate a range of bioactive molecules, including cytokines, growth factors, 
signaling lipids, mRNAs, and regulatory microRNAs (miRNAs), essential for intercellular communication and the 
intercellular transfer of these bioactive elements[9]. MSCs-Exo has similar biological functions with MSCs, such as 
repairing and regenerating tissues and regulating the immune system, suggesting the feasibility of MSCs and MSCs-Exo 
in the treatment of acute lung injury as well as their prospective application in the healing of COVID-19[10,11]. This paper 
reviews the potential mechanisms of MSCs and MSCs-Exo in the treatment of COVID-19, reviews and compares the 
research progress of different sources of MSCs for the remedy of COVID-19, and looks forward to the safety and effect-
iveness of MSCs targeting these organs through different delivery pathways, which provides the theoretical basis for the 
subsequent related therapeutic options.

PATHOGENESIS OF COVID-19 AND DAMAGE TO VARIOUS ORGANS
An exacerbating factor in the progression of COVID-19 is an overactive immune response, characterized by cytokine 
release syndrome[12]. Specifically, SARS-CoV-2 infects alveolar epithelial cells by mediating membrane fusion via 
angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serines and induces an immune response 
accompanied by the accumulation of immunoreactive cells, leading to cytokine storm (CS), resulting in lung tissue 
damage, repair disruption, and subsequent multi-organ dysfunction[13,14]. ACE2 expression in other organs, such as the 
kidney, liver, and heart, contributes to respiratory and multi-organ complications in critically ill patients[15]. Histological 
analyses of patients who died from severe COVID-19 showed that lung lesions, characterized by extensive alveolar 
epithelial damage and inflammatory cell infiltration, were a consequence of viral infection. These pathological changes 
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Table 1 Advantages and disadvantages of existing coronavirus disease 2019 treatment approaches

Treatment 
categories Classification Application examples Countries 

and regions Advantages Disadvantages

Inflammation Dexamethasone reduces 
overreaction of the 
immune system and 
lowers inflammation[118]

Reduces the immune system’s 
overreaction and lowers inflam-
mation, decreasing mortality 
rates

There are uncertainties and 
individual variabilities, which may 
entail potential risks and are 
constrained to early disease 
intervention

Thrombosis Heparin is used to 
prevent thrombosis and 
protect the cardiovascular 
system[119,120]

Reduces the risk of thrombosis 
and improves the prognosis of 
patients

Blood clotting needs to be carefully 
monitored to reduce the risk of 
bleeding

Acute respiratory 
distress syndrome

Oxygen therapy aids in 
supporting respiratory 
function and enhancing 
oxygenation[121,122]

Improves severe hypoxemia There are side effects on healthy 
organs and tissues

Activation of the 
renin-angiotensin-
aldosterone 
system

ACE inhibitors alter ACE2 
expression or activity[123,
124]

Reduces the viral invasion by 
SARS-CoV-2, thus improving 
survival and reducing lung 
inflammation and injury

There is a potential risk of causing or 
exacerbating hypotension, 
hyperkalemia, or kidney damage

Targeting the 
host 
response

Multi-targeted 
stem cell therapy

Stem cell therapy 
promotes the repair of 
damaged tissue, regulates 
immune responses, and 
reduces inflammation
[125]

Widely used 
globally

Decreases the inflammatory 
response, lowers the risk of 
cytokine storms, and promotes 
the repair of damaged tissues, 
thereby improving outcomes in 
severe cases

Further research is necessary to 
ascertain the safety, efficacy, optimal 
timing for administration, and 
appropriate dosages

Artemisia annua, through 
its direct inhibition of 
viral RNA polymerase[5]

Madagasca 
(Africa)

Blocking viral 
replication

The active metabolite of 
remdesivir reduces 
genome replication by 
inhibiting RNA-
dependent RNA 
polymerase[4]

Widely used 
globally

Offers a potential for shorter 
hospitalization

The use of unproven artemisinin 
therapy raises concerns about the 
emergence of drug-resistant malaria. 
For drugs currently in use, there 
should also be extensive randomized 
controlled trials to assess their effect-
iveness and safety in the population

Plasma from convalescent 
patients containing 
antibodies against SARS-
CoV-2[126-128]

Targeting 
viruses

Blocking viral 
access to host cells

Passive administration of 
pathogen-specific 
antibodies has been 
employed to control viral 
infections[129-132]

United States, 
United 
Kingdom, 
Germany, 
China, Brazil, 
Africa, etc.

Provides immediate immune 
support and benefits critically ill 
patients who do not have other 
appropriate treatment options. 
Early administration of 
recombinant monoclonal 
antibody is effective in 
preventing hospitalization

However, challenges include high 
variability in antibody levels and 
quality, the need to match blood 
types, and the risk of transmission of 
other pathogens. The neutralizing 
activity of recombinant monoclonal 
antibodies is readily lost as new 
virus variants emerge

Targeting 
improves 
immunity

Nutritional 
supplement

Vitamin C enhances 
immunity by stimulating 
interferon production and 
lymphocyte proliferation 
and enhancing neutrophil 
phagocytosis[133]

Widely used 
globally

Enhances immunity Further research is needed to fully 
understand its safety, efficacy, 
optimal administration timing, and 
dosage

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ACE2: Angiotensin-converting enzyme 2.

are often associated with intense systemic reactions and can lead to death[16-18].

Damage mechanisms of SARS-CoV-2
Coronaviruses bind to host receptors, mediating membrane fusion and virus penetration through their S proteins[19]. In 
the host response to COVID-19 infection, two primary immune mechanisms are involved: Innate immunity, which 
identifies and neutralizes antigens, and adaptive immunity, activated upon direct antigenic interaction. A foundational 
aspect of the natural immune response is the detection of pathogenic entities by pathogen-associated molecular patterns. 
This detection catalyzes the activation of the nuclear factor kappa-B pathway and the interferon (IFN) regulatory factor 3 
pathway. Activation of these pathways is critical for the induction of type I and type III IFN expression and for 
synthesizing pro-inflammatory cytokines and chemokines[20]. An effective immune response, as described above, 
successfully eliminates the virus and improves the patient’s clinical symptoms. However, SARS-CoV-2 evades host 
immune system surveillance through multiple mechanisms, particularly IFN- and ISG-mediated killing[21]. Studies have 
shown that SARS-CoV-2 can inhibit the early production of IFN, delaying the immune response at the early stages of 
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infection. This delayed response allows the virus more time to replicate and spread, exacerbating infection[22]. When the 
host eventually develops an immune response, the immune system needs to generate a stronger response to clear the 
virus because of the increased viral load. This excessive immune response may release large amounts of inflammatory 
factors, including interleukin (IL)-1β, IL-2, IL-6, IL-7, IL-8, IL-17, and granulocyte colony-stimulating factor. The massive 
release of these inflammatory factors prompts T lymphocytes and monocyte macrophages to migrate from the peripheral 
blood to the site of infection, which may cause a massive uncontrolled immune response that may eventually lead to CS
[23] (Figure 1). The specific immune system also exhibits marked dysregulation in COVID-19, with one of the most 
striking features being the massive depletion of CD4+ T and CD8+ T cells that correlates with the severity of the disease, 
with activated CD4+ T cells typically differentiating into type 1 T helper cells, which exhibit antiviral activity through the 
secretion of cytokines such as IFN-γ, and follicular helper T cells, which assist the B cells in forming germinal centers to 
ensure the long-term maintenance of antibodies in the circulatory system and the persistence of the immune response. In 
contrast, CD8+ T cells potentially kill virus-infected target cells directly[24,25]. Research has indicated that individuals 
suffering from severe COVID-19 cases tend to have elevated concentrations of IL-2, IL-6, tumor necrosis factor-α (TNF-α), 
and granulocyte-macrophage colony-stimulating factor compared to those with mild to moderate infections[26,27]. In 
addition, the number of lymphocytes (CD4+ and CD8+ cells), especially CD8+ T cells, continued to decrease substantially 
in severe patients, but the number of neutrophils increased[28]. Consequently, these results suggest that by closely 
observing CS dynamics, medical professionals could identify patients at an elevated risk of progressing to severe COVID-
19 at an early stage.

SARS-CoV-2 causes damage to vital organs
COVID-19 is an acute infectious disease that can invade various organs, including the respiratory system. The pa-
renchymal area contains diffuse alveolar damage, exudative inflammation, extensive, transparent hyaline membrane 
formations, and alveolar wall edema[29]. In some studies, autopsies have been performed on patients who died of 
COVID-19 to detect viral loads in multiple organs throughout the body, including the brain. Quantitative real-time 
polymerase chain reaction viral nucleic acid assay, electron microscopic observation, and immunohistochemical staining 
were performed to characterize the spread of the viral infection and the different damages to various organs, and SARS-
CoV-2 was detected in the lymph nodes, spleen, heart, liver, gallbladder, kidneys, stomach, and testes[30], providing a 
direct demonstration that SARS-CoV-2 spreads to all parts of the body and causes different histopathological alterations
[31,32]. In addition, ACE2 is a functional receptor of SARS-CoV-2, the “gateway” for viral infection of cells. Single-cell 
RNA sequencing data analysis revealed a subpopulation of cells with high expression of ACE2 in several human organs 
and tissues, including the brain, lung, colon, heart, liver, kidney, teste, and placenta[33]. However, in the spleen, thymus, 
lymph nodes, and bone marrow, immune cells, including B and T lymphocytes and macrophages, uniformly showed an 
absence of ACE2 expression[34]. Therefore, we will use this as a judgment criterion to distinguish primary and secondary 
infections of COVID-19, defining the presence of tissues and organs with high expression of ACE2 as primary infection 
and ACE2 negativity as secondary infection (Tables 2 and 3).

MSCS AND MSCS-EXO CAN BE A POTENTIAL TREATMENT FOR COVID-19
A growing number of studies have reported the reparative role of MSCs and MSCs-Exo in repairing tissue and organ 
damage, as well as respiratory and pulmonary infections. These studies further affirm that the autologous and allogeneic 
sources of MSC products achieve optimal therapeutic outcomes across a broad spectrum of clinical diseases related to 
immunomodulation[35].

MSCs
MSCs were first identified in bone marrow by Fridenshteĭn[36]. In addition to bone marrow, MSCs are present in various 
sources, are easy to obtain, isolate, and culture, have high amplification capacity, and remain stable after multiple 
passages in vitro[37]. Belonging to the category of pluripotent stem cells originating from the mesoderm, MSCs possess 
the capability for multi-directional differentiation. They can transform into various types of tissue cells, including 
adipose, bone, cartilage, muscle, and neural cells when subjected to specific inducing conditions either in vivo or in vitro
[38]. MSCs also have potent tissue-repairing, anti-inflammatory, and immune-modulating functions. MSCs can be 
imported into the body through multiple pathways, which is not easy to cause immune rejection[39]. In addition, studies 
have shown that MSCs derived from different human tissues do not express ACE2, suggesting that MSCs are naturally 
immune to SARS-CoV-2 and that MSCs with low or no HLA expression are resistant to SARS-CoV-2 infection[40], and 
that this low-immunogenicity enables them to evade host immune responses, which is an important basis for their 
therapeutic efficacy. In addition, leukemia inhibitory factor (LIF) released by MSCs can counteract the CS during viral 
pneumonia. However, its expression cannot counteract the disease’s damage[41,42]. To enhance the effectiveness of LIF, 
“LIFNano” nanotechnology, which can amplify the efficacy of LIF by a factor of 1000, has been developed. This 
significant increase in efficacy can effectively suppress CS associated with COVID-19[43]. Therefore, MSCs present a 
viable treatment for COVID-19, offering regulation of the hyperactivated immune response and aiding in the recovery 
from lung damage.

MSCs are extracted and isolated from diverse tissues, such as bone marrow, adipose tissue, dental structures, amniotic 
fluid, the umbilical cord, liver, tendons, and heart[44]. Given their derivation from specific stromal vascular fractions of 
tissues, these MSCs display variability in aspects like gene expression profiles, phenotypic traits, growth dynamics, and 
their differentiation potential[45-47]. Factors such as the extraction site, as well as the MSCs’ quality and quantity, 
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Table 2 Coronavirus disease 2019 causes primary pathological changes

Organ system Primary change

Lung tissue Acute interstitial pneumonia occurs along with diffuse alveolar damage. The lung tissue shows macrophage infiltration, 
hyaline membrane formation, and alveolar wall edema. Microvascular involvement includes hyaline thrombosis, hemorrhage, 
vascular endothelial edema, and immune cell infiltration[134]

+

Cardiovascular system Degeneration and necrosis of some cardiomyocytes, interstitial congestion and oedema, and infiltration by a few monocytes, 
lymphocytes, and neutrophils are observed. The nucleic acid test for novel coronavirus is occasionally positive. Endothelial 
cell detachment and endothelial or whole-layer inflammation are present in small blood vessels in significant parts of the 
body, accompanied by mixed intravascular thrombosis, thromboembolism, and infarction in the corresponding areas. The 
microvessels of major organs are prone to hyaline thrombosis[135]

+

Liver The liver is enlarged with dark red hepatocyte degeneration and focal necrosis with neutrophil infiltration; hepatic sinusoids 
are congested, and lymphocyte and monocyte infiltration and microthrombosis are observed in the confluent area[136]

+

Gallbladder The gallbladder is highly filled, and the mucosal epithelium is detached[137] +

Kidney The renal glomeruli exhibit congestion and occasional segmental fibrinoid necrosis; proteinaceous exudates can be observed 
within the glomerular lumens. Proximal renal tubular epithelial degeneration, partial necrosis, and desquamation are present, 
while casts can be found in the distal tubules. The renal interstitium is congested, with microthrombi formation noted[138]

+

Brain Congestion, oedema, degeneration of some neurons, ischaemic changes and detachment, phagocytosis, and satellite 
phenomena are found. Infiltration of monocytes and lymphocytes in the perivascular space is observed[139]

Testicle Varying degrees of reduction in the number of spermatogenic cells and degeneration of Sertoli and Leydig cells are observed
[140]

+

Adrenal gland Cortical cell degeneration, focal hemorrhage, and necrosis are observed[141]

Esophageal, gastric, 
and intestinal mucosal 
epithelium

There is variable degeneration, necrosis, and detachment observed, accompanied by the infiltration of monocytes and 
lymphocytes in the lamina propria and submucosa[142,143]

+

+: The nucleic acid test for novel coronavirus was positive.

Table 3 Coronavirus disease 2019 causes secondary pathological changes

Organ 
system Secondary change

Spleen The spleen shrinks. The white marrow is atrophic, with a decreased number of lymphocytes and some cell necrosis; the red marrow is 
congested and focally hemorrhagic, macrophages are proliferated, and phagocytosis is observed in the spleen; anemic infarcts of the 
spleen are easily found. Immunohistochemical staining shows decreased spleen CD4+ T and CD8+ T cells[144]

+

Lymph 
nodes

The lymphocyte count is reduced, and necrosis is found. Immunohistochemical staining shows decreased CD4+ T and CD8+ T cells in the 
spleen and lymph nodes. Lymph node tissues may be positive for novel coronavirus nucleic acid detection in macrophages[145]

+

Bone 
marrow

Hematopoietic cells are either hyperplastic or reduced in number, with an increased granulocyte-red ratio[146]

+: The nucleic acid test for novel coronavirus was positive.

influence the composition of growth factors, cytokines, extracellular vesicles, and secreted bioactive elements in the 
regenerative context, which in turn plays a critical role in shaping the therapeutic outcomes in clinical settings[48]. 
Selecting an appropriate MSC source is pivotal for the success of their application in treating various diseases. Here, we 
compare the advantages and disadvantages of MSC therapy for COVID-19 from different sources (Table 4), we believe 
that umbilical cord MSCs (UC-MSCs) can be prioritized for COVID-19 treatment, but the exact molecular mechanism of 
UC-MSCs for COVID-19 treatment still needs to be explored in the future[49].

Although cell therapy has many advantages in treating COVID-19, it faces numerous challenges. First, specific 
cytokines secreted by MSCs, such as vascular endothelial growth factor (VEGF), may induce tumors. Second, since MSCs 
are highly sensitive to harsh cellular microenvironments (e.g., inflammation), their survival rate is low after tran-
splantation. In addition, the cells may block small-diameter pulmonary arteries during transplantation. Finally, another 
challenge for cell therapy is the storage of cells at temperatures as low as -80 °C, which requires special equipment and 
techniques[50,51]. To address these challenges, increasing evidence suggests that MSCs-Exo may be a novel cell-free 
therapy[52].

MSCs-Exo
Exosomes are small vesicles containing complex RNAs and proteins with lipid bilayer membrane structure, which can 
carry and transfer a wide range of proteins, lipids, and nucleic acids related to their cellular origin, acting as signaling 
molecules to other cells and thus participating in the important regulation of cellular exercises, influencing the 
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Table 4 Comparison of different sources of mesenchymal stem cells for treatment of coronavirus disease 2019

Types Advantages Disadvantages

UC-
MSCs

Prevent fibrosis and restore the oxygenation index and 
down-regulated CS in critically ill COVID-19 hospitalized 
patients; readily available and rapidly expanded to clinically 
required numbers without raising ethical issues and with 
minimal allograft rejection[147,148]

More extensive randomized trials and phase III clinical trials of UC-MSCs are still 
needed to investigate the exact molecular mechanisms of UC-MSCs in treating 
COVID-19 patients

BM-
MSCs

Inhibit CS[149] Adverse events such as low cryopreservation survival, cell product hetero-
geneity, immunogenicity, and thrombus generation, which have been observed 
with BM-MSCs products, as well as the low number of MSCs in bone marrow 
aspirates and the invasive nature of the process of obtaining MSCs have also 
prevented the generalization of BM-MSCs[150-152]

PL-
MSCs

Higher amounts of CD106 are expressed because surface 
markers such as CD106 and CD54 are important for 
immunizing MSCs through cell-to-cell contact[153]

Differences in autologous or allogeneic preparation protocols and ethical 
concerns about PL-MSCs[154]

ADSCs Rich tissue sources and tissue collection methods are simple
[155]

Some severe side effects have been shown, such as three cases of vision loss after 
patients with AMD received bilateral intravitreal injections of autologous adipose 
tissue-derived stem cells at a stem-cell clinic[156]

ADSCs: Adipose-derived mesenchymal stem cells; AMD: Age-related macular degeneration; BM-MSCs: Bone marrow-derived mesenchymal stem cells; 
PL-MSCs: Placenta-derived mesenchymal stem cells; UC-MSCs: Umbilical cord mesenchymal stem cells; MSC: Mesenchymal stem cell; COVID-19: 
Coronavirus disease 2019; CS: Cytokine storm.

physiological activities of target cells, and mediating biological effects such as inter-cellular signaling and immunomodu-
lation[53]. MSCs-Exo and MSCs share similar functions, including the repair and regeneration of tissues and the 
regulation of body immunity[54]. Several studies have demonstrated that MSCs-Exo may inhibit CSs and reduce tissue 
damage conditions, including ARDS, acute lung injury, and fibrosis[55]. MSCs-Exo group had similar therapeutic 
outcomes and efficacy to MSCs for treating pulmonary fibrosis after COVID-19 and may be a novel therapy for long-term 
pulmonary sequelae[56]. MSCs-Exo also enhanced macrophage phagocytosis and significantly diminished TNF-α and IL-
8 secretion, thereby ameliorating lipopolysaccharide-induced lung injury in mice[57]. Furthermore, many of these MSC-
Exos are carriers of miRNAs, which are integral in controlling important cell functions such as cellular proliferation, 
programmed cell death, and the responses of the host immune system[58,59]. Therefore, MSCs-Exo could serve as 
optimal carriers for delivering specific antiviral medications in treating COVID-19[60]. However, the widespread use of 
exosomes faces numerous challenges. With the large variety of MSCs, it is unclear whether there are discrepancies 
between exosomes of different origins and how much these differences affect the immunomodulatory effects. In addition, 
these multifaceted challenges include selecting appropriate isolation and purification methods, preparing high-quality, 
homogeneous, large quantities of exosomes, and optimizing exosome storage conditions[61]. In addition, the issue of 
efficiently delivering drugs to target cells needs to be addressed. These difficulties must be overcome to utilize the 
potential of exosomes in COVID-19 treatment fully. MSCs-Exo origin has shown promising applications in various 
diseases.

MECHANISMS OF COVID-19 TREATMENT BY MSCS AND MSCS-EXO
As mentioned earlier, the generation of CS caused an uncontrolled immune response in patients, and the subsequent 
symptoms of ARDS and acute lung injury were the main reasons for the aggravation of COVID-19 patients’ conditions 
and even death. While MSCs and MSCs-Exo have the ability of immune regulation and tissue repair and regeneration, 
they can be homed to the injury site to alleviate lung injury and inhibit lung fibrosis in the treatment of COVID-19, and 
have a positive effect on the improvement of the respiratory function and the prognosis of the patients with COVID-19 
(Figure 2).

Homing
Homing of MSCs: The “homing effect” of MSCs allows them to localize to areas of injury due to various causes, which is 
a prerequisite for the therapeutic action of stem cells[62]. MSCs can be administered via systemic routes or directly at 
specific sites. These two pathways guide the systemic homing and non-systemic homing of MSCs, respectively[63]. In 
non-systemic homing, MSCs are transplanted locally into damaged tissue, and chemokine gradients guide MSCs to 
migrate to the injury site accurately. On the other hand, systemic homing involves a more complex biological process, 
including five key steps: Rolling, activating, arresting, crawling, and migrating. This series of steps enables MSCs to 
migrate from the blood to distant sites of injury efficiently, which can be accelerated with the help of drugs or may occur 
through the natural entry of MSCs into the bloodstream. Each step has its unique biological significance, which 
collectively promotes the efficient transport and localization of MSCs in the body[62]. With this “homing effect”, MSCs 
are delivered to the damaged site and play an active role in repair and regeneration[64].
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Figure 1 Mechanisms of severe acute respiratory syndrome coronavirus 2 damage. By Figdraw, https://www.figdraw.com. Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) binds to host receptors, mediates membrane fusion and viral penetration, and predominantly infects type II alveolar epithelial 
cells expressing angiotensin-converting enzyme 2 receptors in the alveoli. Rapid replication of SARS-CoV-2 after the invasion of the body subsequently triggers a 
potent immune system response, with heat shock proteins or other damage-associated molecular patterns released by injured lung parenchymal cells, and inhaled 
pathogen-associated molecular patterns initiating the immune response through the activation of classical pattern recognition receptors, which include not only toll-
like receptors, but also multiple lineage-encoded receptors, such as Rig-I like receptor, Nod-like receptors, and C-type lectin-like domains, which further activate 
interferon regulatory factor 3 and nuclear factor kappa-B pathways and enhance T-cell secretion. Pathogenic T helper cell 1 releases signals to B cells, natural killer 
(NK) cells, and macrophages, whereas NK cells release tumor necrosis factor-α (TNF-α), interleukin (IL)-8, granulocyte-macrophage colony-stimulating factor (GM-
CSF), and interferon (IFN)-γ. GM-CSF further activates CD14+ CD16+ inflammatory monocytes and enhances the secretion of inflammatory cytokines (TNF-α, IL-6, 
IL-12, IL-1β) from alveolar macrophages, thereby further elevating the secretion of inflammatory cytokines, thus further elevating the level of inflammation in damaged 
lung tissues and causing a cytokine storm that results in multi-organ dysfunction and even failure of the lung, heart, spleen, kidneys, liver, brain, and gall bladder. 
ACE2: Angiotensin-converting enzyme 2; CTLD: C-type lectin-like domain; DAMPs: Damage associated molecular patterns; GM-CSF: Granulocyte-macrophage 
colony-stimulating factor; IFN-γ: Interferon-γ; IL: Interleukin; IRF3: Interferon regulatory factor 3; NK cells: Natural killer cells; NF-κB: Nuclear factor kappa-B; NLRs: 
Nod-like receptors; PAMPs: Pathogen-associated molecular patterns; PRRs: Pattern recognition receptors; RLRs: Rig-I like receptors; SARS-CoV-2: Severe acute 
respiratory syndrome coronavirus 2; TLRs: Toll-like receptors; TNF-α: Tumor necrosis factor-α.

Kosaric et al[65] showed that Ly6Chi cells could not be converted to the Ly6Clo phenotype in injured tissues, resulting 
in delayed tissue repair. Depletion of Ly6c+ macrophages can be observed in wounds where bone marrow MSCs (BM-
MSCs) appeared through a systemic homing effect after intravenous infusion. This study suggests that MSCs can migrate 
to the injury site through systemic homing and promote the injury-healing process, providing a theoretical basis for the 
clinical treatment of COVID-19 with MSCs. In addition, it has been shown that patients with COVID-19 may develop 
intestinal infections with gastrointestinal symptoms of varying severity, including abdominal pain, diarrhea, consti-
pation, nausea, and heartburn[66]. There have been reports confirming the therapeutic role of MSCs in intestinal injury 
diseases: Administration of 2, 4, 6-trinitrobenzene sulfonic acid to guinea pigs to induce colitis, followed 3 h later by 
enema of MSCs, resulted in the non-systematic homing of MSCs to the site of intestinal injury, controlling the 
development of localized injury and treating COVID-19-induced by multiple mechanisms, such as the promotion of 
intestinal epithelial regeneration and mucosal repair intestinal infections[67].

Homing of MSCs-Exo: In addition, Alvarez-Erviti et al[68] concluded that functional small interfering RNAs could be 
efficiently delivered to the mouse brain by systemic injection of targeted exosomes. This finding implies that MSCs-Exo 

https://www.figdraw.com


Hou XY et al. Treatment of COVID-19

WJSC https://www.wjgnet.com 360 April 26, 2024 Volume 16 Issue 4

Figure 2 Main mechanisms of mesenchymal stem cells and their derived exosomes for coronavirus disease 2019 treatment. By Figdraw, 
https://www.figdraw.com. Currently, mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) used for the treatment of coronavirus disease 2019 
(COVID-19) are administered by intravenous infusion or nebulized inhalation. The main mechanisms of MSCs and MSCs-Exo for COVID-19 include: (1) Homing: 
Non-systemic homing: MSCs are locally transplanted and directed to the site of injury by a chemokine gradient; systemic homing process of MSCs in the 
inflammatory microenvironment: Rolling; activating; arresting; crawling; migrating; (2) Immunomodulation: Severe acute respiratory syndrome coronavirus 2 invasion 
into alveoli and other tissues leads to the activation of T cells. At the same time, MSCs coordinate local and systemic innate and adaptive immune responses, 
promote macrophage polarization from M1 to M2 subtypes, inhibit T cell activation and proliferation, promote the proliferation of regulatory T cells (Tregs), inhibit the 
killing function of natural killer cells and the maturation of dendritic cell (including mature dendritic cells and tolerogenic dendritic cells). T cells produce interferon 
(IFN)-γ and IFN-α. MSCs may produce anti-inflammatory mediators such as transforming growth factor β, prostaglandin E2 (PGE 2), indoleamine 2,3-dioxygenase, 
and interleukin-10, which regulate T-cell and Treg-cell-mediated immune responses. On the other hand, MSCs can promote macrophage polarization from the M1 to 
M2 subtype by secreting PGE 2 and tumor necrosis factor α stimulated gene 6; and (3) Regenerative repair: Growth factors such as keratinocyte growth factor and 
angiopoietin-1 (Ang-1) promote the restoration of the alveolar-capillary barrier, while nerve growth factor, vascular endothelial growth factor, and Ang-1 promote 
neovascularization in healing tissues, activate the coagulation pathway, and promote blood coagulation, which contributes to repair and regeneration. MSC: 
Mesenchymal stem cell; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; NK cells: Natural killer cells; TNF-α: Tumor necrosis factor-α; IFN-α: 
Interferon-α; TGF-β: Transforming growth factor β; PGE2: Prostaglandin E2; IL: Interleukin; IDO: Indoleamine 2,3-dioxygenase; TSG-6: Tumor necrosis factor α 
stimulated gene 6; Ang-1: Angiopoietin-1; DCs: Dendritic cells; KGF: Keratinocyte growth factor; NGF: Nerve growth factor; Tregs: Regulatory T cells; VEGF: 
Vascular endothelial growth factor.

may also retain the homing properties of MSCs. However, this property of MSCs-Exo has not yet been systematically 
studied, and deeper exploration is still needed to broaden therapeutic ideas against COVID-19 in the future.

Immunomodulation
Immunomodulatory role of MSCs: MSCs have a bi-directional immunoregulatory mechanism, exerting an immune-
boosting effect when the immune response is low and inhibiting the immune response when the immune response is 
strong. When MSCs migrate towards the injury site, they exert their immunosuppressive properties to inhibit the 
development of CS, which is achieved through the paracrine pathway of MSCs that releases large amounts of soluble 
cytokines, growth factors, chemokines, and other mediators or directly interacts with immune cells. Key factors 
associated with these processes are numerous, including IL-6[69], transforming growth factor β (TGF-β)[70], 
prostaglandin E2[71], indoleamine 2,3-dioxygenase[72] and nitric oxide synthase (iNOS)[73]. Also, MSCs play a critical 
role in modulating local and systemic immune responses, influencing a range of in vivo effector functions[74]. These 
functions encompass enhancing macrophage polarization, suppressing the activation and proliferation of T-cells, 
fostering the growth of regulatory T-cells (Tregs), and reducing the cytotoxic activity of natural killer cells, among others
[75,76]. Among them, MSCs can promote macrophage polarization from the M1 subtype to the M2 subtype, this process 
can be mediated by cytokines (e.g., TGF-β) secreted by MSCs[57,77,78]. MSCs can also regulate T cell function in various 
ways, such as secreting soluble proteins (e.g., programmed death ligand 1) to inhibit the proliferation and activation of 
CD4+ T cells and inducing them to be hyporesponsive[79,80].
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It was found that MSCs cultured in a serum-free medium significantly inhibited bleomycin-induced lung fibrosis by 
enhancing the induction of Tregs into the lungs and correcting the dysregulated cytokine balance[81]. In addition, MSCs 
can regulate the activity and differentiation of immune cells and inhibit immune responses. In a mouse model of acute 
lung injury, infusion of MSCs reduced the number of M1-type macrophages, inhibited neutrophil chemokine secretion, 
reduced the enrichment of CD38+ and CD11b+ CD38+ monocyte-derived dendritic cells in the lungs, and inhibited antigen 
presentation processes[82].

Immunomodulatory role of MSCs-Exo: MSCs can also promote macrophage polarization from the M1 subtype to the M2 
subtype by secreting miRNA-carrying exosomes (e.g., miR-182)[57,77,78]. On the other hand, MSCs-Exo promotes the 
proliferation and immunosuppressive capacity of Tregs by up-regulating the inhibitory cytokines IL-10 and TGF-β, 
attenuating the inflammatory response, and decreasing the level of overactive immune response in patients with COVID-
19[79,80]. In addition, recently published studies have shown that MSCs-Exo induces M2 polarization in macrophages by 
down-regulating iNOS and up-regulating arginase 1 antibody[83] to ameliorate the adverse consequences of SARS-CoV-2 
infection, which predicts a great potential for the application of MSCs-Exo in immune modulation.

Regenerative repair and antifibrotic effects
Regenerative repair and antifibrotic effects of MSCs: In the context of critical COVID-19 patients, some present with 
significant alveolar and pulmonary vascular endothelial cell damage, accompanied by varying degrees of pulmonary 
fibrosis. MSCs promote the repair and regeneration of the damaged alveolar epithelium by secreting multiple cytokines 
and trophic factors[84,85]. MSCs can restore the function and integrity of damaged alveolar epithelium by secreting 
paracrine factors such as TGF-α, TGF-β, hepatocyte growth factor (HGF), epithelial growth factor, and angiopoietin 1[86]. 
Gong et al[87] demonstrated that MSCs co-cultured with alveolar epithelium in vitro could successfully differentiate into 
type II alveolar epithelial cells and repair the damaged alveolar structure. In addition, the decrease of alveolar 
permeability to proteins caused by intravenous infusion of MSCs given to ARDS patients may be mediated by the 
reduction of alveolar epithelial damage, which also provides biological evidence for treating lung injury with MSCs[88].

In addition, MSCs produce various pro-angiogenic factors that activate both extrinsic and intrinsic coagulation 
pathways, promote blood coagulation, and facilitate neovascularization in healing tissues. The latest clinical findings 
suggest that pulmonary vascular endothelial cells can also be essential as therapeutic targets during SARS-CoV-2 
infection[89]. MSCs can release VEGFs to form neovascularization and improve endothelial function. Several studies have 
confirmed the ability of skin-derived ABCB5+ MSCs to activate the pro-angiogenic hypoxia-inducible factor-1 pathway 
under low oxygen conditions. This activation significantly enhanced the transcription of VEGF by approximately 
quadrupling its level. Consequently, this upsurge in transcription was observed to substantially boost VEGF protein 
secretion, effectively contributing to repairing damaged blood vessels[85].

In addition to the damage of alveolar and pulmonary vascular endothelial cells, the lungs of some patients with severe 
COVID-19 also show different degrees of pulmonary fibrosis symptoms. MSCs can significantly reduce pulmonary 
fibrosis and improve lung structure and function. It was found that MSCs secreted antifibrotic proteins and improved 
lung collagen deposition and lung fibrosis scores in mice in a bleomycin-induced lung fibrosis model[90]. The above 
studies illustrate that MSCs inhibit fibrosis, but whether MSCs can be used in COVID-19-associated pulmonary fibrosis 
triggered by multiple factors and the specific improvement effect still needs to be verified by more in vivo experiments 
and a more mature clinical evaluation system.

Regenerative repair and antifibrotic effects of MSCs-Exo: MSCs-Exo also contributes to the recovery of alveolar 
epithelial and endothelial cells, maintains vascular barrier integrity, repairs damaged lung tissues, and reduces 
pulmonary fibrosis. MSCs-Exo contains all the same immunomodulatory and pro-angiogenic factors as MSCs, and the 
immunomodulation mediated by MSCs-Exo is similar to or even superior to that of MSCs[91]. In addition, highly 
expressed miR-145 and related proteins within the exosomes also significantly promoted the functional maintenance and 
regeneration of injured lung tissues, thereby facilitating lung injury repair and providing a more promising therapeutic 
approach for COVID-19[92]. In an experimental lung fibrosis model, growth factors secreted by MSCs through exosomes, 
such as HGF, showed anti-fibrotic effects. HGF prevents apoptosis of epithelial cells and shows anti-fibrotic effects in an 
experimental fibrosis model[93]. Therefore, MSCs-Exo represents a potential novel cell-free therapeutic agent for 
regenerative repair and antifibrosis in regenerative medicine, and its efficacy needs to be explored in future clinical trials.

Other possible mechanisms
In addition to the several main mechanisms of action mentioned above for the treatment of COVID-19, there are some 
other potential mechanisms, such as the antimicrobial effect of MSCs, which also provide new ideas for the treatment of 
COVID-19. Compared with mild COVID-19 patients, the neutrophil counts in severe patients showed a significant 
increase at 13-15 d after the onset of the disease, suggesting that severe patients may have a co-infection of bacterial 
infections and viral infections[94]. Research has demonstrated the vital role of human-derived antimicrobial peptides, 
integral to the innate immune system, in providing early defense against lung viral infections[95]. MSCs combat 
pathogenic infections by producing these antimicrobial peptides, a capability that has potential applications in treating 
severe COVID-19 cases[96]. The antimicrobial actions of MSCs are attributed to the secretion of various cytokines, 
including LL-37[97], human β-defensin-2 (hBD-2)[98], and lipid carrier protein 2 (Lcn2)[99], among others, and the 
regulation of immune cell functions. Specifically, MSCs directly eliminate bacteria through LL-37, which interacts with 
the toll-like receptor-4 signaling pathway, and through Lcn2, which is mediated by hBD-2[98]. MSCs lack phagocytic 
activity, but when macrophages are reprogrammed from a pro-inflammatory phenotype to an anti-inflammatory 
phenotype, MSCs stimulate monocyte macrophages to enhance their phagocytosis of bacteria[100] to promote bacterial 
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infection in critically ill patients’ recovery. The antimicrobial effects of MSCs could be utilized as an improved COVID-19 
treatment.

Multidimensional mechanisms of MSCs and MSCs-Exo in the treatment of COVID-19
MSCs and MSCs-Exo have multiple roles in treating and repairing COVID-19-induced tissue damage, and there is a close 
relationship between the mechanisms of homing, immunomodulation, regenerative repair, and anti-fibrotic. The unique 
homing ability and targeted modifications of MSCs can enhance their ability to promote tissue regeneration[101]. When 
tissues and organs are damaged, MSCs sense and respond to signaling molecules released from damaged tissues, migrate 
to these damaged areas, and activate the immune system. Next, damaged cells secrete damage-associated molecular 
patterns and vigilantes, signaling substances that attract leukocytes such as neutrophils, monocytes, dendritic cells, 
natural killer cells, and T lymphocytes to the injury site. After successfully eliminating the pathogen, the immune cells 
shift to an immunosuppressive phenotype that contributes to the production and proliferation of immunosuppressive 
cells to moderate the ongoing inflammatory response[102]. MSCs can promote the repair and regeneration of damaged 
tissues by secreting growth factors and extracellular vesicles. MSCs can differentiate into different types of cells, such as 
osteoblasts, chondrocytes, or adipocytes, to replace the damaged cells, increase the number of new cells, and repair the 
damaged tissue structure. In addition, MSCs-Exo is one of the key factors released by MSCs and has similar functions to 
MSCs. For example, MSCs-Exo can also regulate the activity of receptor cells, promote cell self-repair and tissue 
regeneration, and accelerate wound repair at the injury site[103]. In summary, multiple mechanisms promote the repair of 
damaged tissues, which makes MSCs and MSCs-Exo promising to be potent tools for treating COVID-19, autoimmune 
diseases, trauma, and chronic diseases.

CURRENT STATUS OF CLINICAL TRIALS OF MSCS AND MSCS-EXO FOR THE TREATMENT OF  
COVID-19
Many clinical trials involving MSCs and MSCs-Exo have demonstrated their effectiveness in treating COVID-19 and 
related complications. As of November 2023, more than 100 registered clinical trials have investigated the use of MSCs 
and MSCs-Exo for the treatment of COVID-19, and our study covers 20 of the most recent relevant clinical trials in terms 
of cell source, dosage administered, and therapeutic efficacy (in terms of clinical symptoms, biomarkers, and lung 
imaging) (Table 5). Meanwhile, we have preliminarily summarized the general criteria for treating COVID-19 by MSCs 
and MSCs-Exo based on the relevant clinical trials mentioned above, which mainly include the following aspects.

Patient selection
Most of the COVID-19 patients treated with MSCs and MSCs-Exo were moderate to severe, often developed ARDS, and 
eventually progressed to multiple organ failure. The severity of the disease is not determined by the viral load of SARS-
CoV-2 but by the inflammatory response[104]. The abnormal increase in pro-inflammatory and anti-inflammatory 
cytokines in patients with severe COVID-19 indicates a dysfunction in their immune system, necessitating the treatment 
with MSCs and MSCs-Exo. COVID-19 patients should meet specific inclusion criteria, including age, underlying diseases, 
and the patient’s immune status, to exclude patients suffering from specific comorbidities or high risk of complications 
from stem cell therapy. In addition, some studies might choose older patients due to their generally more severe reactions 
to COVID-19[105].

Types of MSCs and MSCs-Exo used in clinical trials
The collection of MSCs and MSCs-Exo needs to meet ethical and legal requirements and be expanded and prepared in the 
laboratory to obtain sufficient numbers of cells and exosomes for treatment. In 20 of these clinical trials, 14 used UC-
MSCs, 1 used CD362-enriched, umbilical cord-derived MSCs, 1 used placental MSC, 1 used BM-MSCs, 1 used allogenic 
menstrual blood-derived MSCs, and 2 used MSCs-Exo. These data suggest that UC-MSCs are a significant source for use 
in clinical trials to treat COVID-19.

Therapeutic dose
The therapeutic dose of MSCs and MSCs-Exo is usually determined based on the patient’s body weight and specific 
clinical conditions. In Table 5, most clinical trials employed a multi-dose (2-3 times) administration approach, with each 
dose ranging from 5 × 105 cells/round to 2 × 108 cells/round. In clinical trials involving MSCs-Exo, one study adopted a 
twice-daily administration (at 8: 30 am and 4: 00 pm), each session lasting 10 min, while another trial implemented a 
consecutive 5-d dosing regimen, with each dose ranging from 1 × 106 cells/round to 2 × 108 cells/round. Given the 
prevalent administration of doses up to 2 × 108 cells/round in current clinical trials, we categorize this as a higher dosage 
range. Consequently, we delve into the efficacy of high-dose therapy and the potential risks associated with even higher 
dosages. In the phase 1 trial conducted by Hashemian et al[106] focused on treating severe ARDS with MSCs, the findings 
indicated that administering multiple high-dose (at days 0, 2, and 4, 2 × 108 cells/d) intravenous infusions of prenatal 
allogeneic MSCs was generally safe and well-tolerated.

Notably, although MSCs treatment of COVID-19 showed potential benefits, the increased cell dose may be ac-
companied by some risks and potential adverse events, such as: (1) Excessive immunosuppression: The use of high doses 
of MSCs may lead to excessive suppression of the immune system, which may fail to effectively clear the COVID-19 
virus, prolonging the period of infection or allowing the virus to recur[107]; (2) Cell transplantation-related reactions: 
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Table 5 Efficacy of mesenchymal stem cells and their derived exosomes in clinical trials for the treatment of coronavirus disease 2019 patients

Effectiveness of treatment
No. Study title Trial ID Phase Indications Source Route and time 

of administration Dose
Clinical symptoms Cytokine storm 

biomarkers Lung image

Number 
of 
patients

Ref.

1 Effectiveness and safety of 
normoxic allogenic 
umbilical cord 
mesenchymal stem cells 
administered as adjunctive 
treatment in patients with 
severe COVID-19

NCT04333368 Phase 1 Severe COVID-
19

NA-UC-
MSC

Intravenous 
infusions, 3 rounds 
(at days 0, 3, and 6)

1 × 106/kg Improved the 
oxygenation index, 
oxygen saturation

↓ESR, CRP 42 [104]

2 Repair of acute respiratory 
distress syndrome in 
COVID-19 by stromal cells 
(REALIST-COVID Trial): A 
multicenter, randomized, 
controlled clinical trial

NCT03042143 Phase 2 Moderate and 
severe ARDS in 
COVID-19

ORBCEL-C Intravenous 
infusions, 1 round

400 × 106 cells Prolonged duration 
of ventilation, 
modulated the 
peripheral blood 
transcriptome

60 [157]

3 Human placenta-derived 
mesenchymal stem cells 
transplantation in patients 
with acute respiratory 
distress syndrome (ARDS) 
caused by COVID-19 (phase 
I clinical trial): Safety profile 
assessment

IRCT20200621047859N4 Phase 1 ARDS in 
COVID-19

PL-MSC Intravenous 
infusions, 1 round

1 × 106 cells/kg Not show any 
adverse events

20 [153]

4 Bone marrow-derived 
mesenchymal stromal cell 
therapy in severe COVID-
19: Preliminary results of a 
phase I/II clinical trial

NCT04445454 Phase 
1/2

Severe COVID-
19

BM-MSC Intravenous 
infusions, 3 rounds 
(1, 4 ± 1, 7 ± 1)

(1.5-3) × 106 
cells/kg

The higher survival 
rate in the MSC 
group at both 28 and 
60 d

↓D-dimer 32 [158]

5 Mesenchymal stromal cell 
therapy for COVID-19-
induced ARDS patients: A 
successful phase 1, control-
placebo group, clinical trial

IRCT20160809029275N1 Phase 1 ARDS in 
COVID-19

UC-MSC Intravenous 
infusions, 3 rounds 
(1, 3, 5)

1 × 106 cells/kg Improved the SpO2
/FiO2 ratio

↓CRP, IL-6, IFN-γ, 
TNF-α, and IL-17A; 
↑TGF-β, IL-1β, IL-
10

20 [159]

6 Safety of DW-MSC infusion 
in patients with low clinical 
risk COVID-19 infection: A 
randomized, double-blind, 
placebo-controlled trial

NCT04535856 Phase 1 Low clinical risk 
COVID-19

UC-MSC Intravenous 
infusions, 1 round

High dose: 1 × 108 
cells or low dose: 
5 × 107 cells

9 [160]

Safety and long-term 
improvement of 
mesenchymal stromal cell 
infusion in critically 

↓Ferritin, IL-6, 
MCP1-CCL2, CRP, 
D-dimer, and 
neutrophil levels; 

A decrease in the 
extent of lung 
damage was 
observed in the 

7 U1111-1254-9819 Phase 
1/2

Critical COVID-
19

UC-MSC Intravenous 
infusions, 3 rounds 
(at days 1, 3, and 5)

5 × 105 
cells/kg/round

17 [161]
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COVID-19 patients: A 
randomized clinical trial

↑TCD3, TCD4, and 
NK lymphocytes

fourth month

8 Treatment of COVID-19-
associated ARDS with 
mesenchymal stromal cells: 
A multicenter randomized 
double-blind trial

NCT04333368 Phase 2 ARDS in 
COVID-19

UC-MSC Intravenous 
infusions, 3 rounds 
(at days 1, 3 ± 1, 
and 5 ± 1)

1 × 106 
cells/kg/round

Significant increase 
in PaO2/FiO2 ratios

47 [162]

9 Clinical experience on 
umbilical cord 
mesenchymal stem cell 
treatment in 210 severe and 
critical COVID-19 cases in 
Turkey

Phase 1 Severe/critical 
COVID-19

UC-MSC Intravenous 
infusions, 1 round

(1-2) × 106/kg Significantly lower 
mortality, 
improvements in 
SaO2

210 [163]

10 Cell therapy in patients with 
COVID-19 using Wharton’s 
jelly mesenchymal stem 
cells: A phase 1 clinical trial

IRCT20190717044241N2 Phase 1 Severe COVID-
19

UC-MSC Intravenous 
infusions, 3 rounds 
(at days 0, 3, and 6)

1.5 × 108 
cells/round

↓Ferritin 5 [70]

11 The systematic effect of 
mesenchymal stem cell 
therapy in critical COVID-
19 patients: A prospective 
double controlled trial

NCT04392778 Phase 
1/2

Critical COVID-
19

UC-MSC Intravenous 
infusions, 3 rounds 
(at days 0, 3, and 6)

3 × 106 
cells/kg/round

↓Ferritin, 
fibrinogen, and 
CRP

30 [164]

12 Umbilical cord 
mesenchymal stromal cells 
as critical COVID-19 
adjuvant therapy: A 
randomized controlled trial

NCT04457609 Phase 1 ARDS in 
COVID-19

UC-MSC Intravenous 
infusions, 1 round

1 × 106 
cells/kg/round

Survival rate was 2.5 
times higher in the 
UC-MSC group than 
in the control group

↓IL-6 40 [165]

13 Evaluation of the safety and 
efficacy of using human 
menstrual blood-derived 
mesenchymal stromal cells 
in treating severe and 
critically ill COVID-19 
patients: An exploratory 
clinical trial

ChiCTR2000029606 Phase 1 Severe and 
critical COVID-
19

Allogenic 
menstrual 
blood-
derived 
MSCs

Intravenous 
infusions, 3 rounds 
(1, 3, 7)

Total 9 × 107 cells Significant 
improvement in 
dyspnea on days 1, 3, 
and 5 and significant 
improvements in 
SpO2 and PaO2

Improved the 
lung condition

44 [166]

14 Effect of human umbilical 
cord-derived mesenchymal 
stem cells on lung damage 
in severe COVID-19 
patients: A randomized, 
double-blind, placebo-
controlled phase 2 trial

NCT04288102 Phase 2 Severe COVID-
19

UC-MSC Intravenous 
infusions, 3 rounds 
(at days 0, 3, and 6)

4 × 107 
cells/round

Significant 
reduction in the 
proportions of 
solid component 
lesion volume

100 [147]

Mesenchymal stem cells 
derived from perinatal 
tissues for treatment of 
critically ill COVID-19-

↓TNF-α, IL-8, and 
CRP. There is no 
significant 
difference between 

15 IRCT20200217046526N2 Phase 1 ARDS in 
COVID-19

UC-MSC Intravenous 
infusions, 3 rounds 
(at days 0, 2, and 4)

2 × 108 
cells/round

Reduced dyspnea 
and increased SpO2 
within 2-4 d

Reduction in 
ground-glass 
opacities or 
consolidation

11 [106]
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induced ARDS patients: A 
case series

the two groups (P > 
0.05)

16 Umbilical cord 
mesenchymal stem cells for 
COVID-19 acute respiratory 
distress syndrome: A 
double-blind, phase 1/2a, 
randomized controlled trial

NCT04355728 Phase 
1/2a

ARDS in 
COVID-19

UC-MSC Intravenous 
infusions, 2 rounds 
(at days 0 and 3)

(10 ± 2) × 107 
cells/round

Improved patient 
survival and a 
shorter time to 
recovery

↓GM-CSF, IFN-γ, 
IL-5, IL-6, IL-7, 
TNF-α, and TNF-β

24 [167]

17 Human umbilical cord-
derived mesenchymal stem 
cell therapy in patients with 
COVID-19: A phase 1 
clinical trial

NCT04252118 Phase 1 Moderate and 
severe COVID-
19

UC-MSC Intravenous 
infusions, 3 rounds 
(at days 0, 3, and 6)

3 × 107 
cells/round

↓IL-6, IFN-γ, 
TNF-α, MCP-1, IP-
10, IL-22, IL-1RA, 
IL-18, IL-8, and 
MIP-1

Complete fading 
of lung lesions 
within 2 wk

18 [168]

18 Treatment of severe 
COVID-19 with human 
umbilical cord 
mesenchymal stem cells

ChiCTR2000031494 Phase 1 Severe/critical 
COVID-19

UC-MSC Intravenous 
administration, 1 
round

2 × 106 cells/kg Improved the 
weakness, fatigue, 
shortness of breath, 
and oxygenation 
index as early as the 
third day

↓CRP, IL-6 Shorter lung 
inflammation 
absorption

41 [49]

19 Nebulization therapy with 
umbilical cord 
mesenchymal stem cell-
derived exosomes for 
COVID-19 pneumonia

ChiCTR2000030261 Phase 1 Moderate 
COVID-19

MSCs-Exo Nebulized, twice a 
day (am 8:30, pm 
16:00) for 10 min 
each

1 million cells/kg 
predicted body 
weight

↓CRP, IFN-γ, IL-17, 
ATH 19; ↑NK

Absorption of 
pulmonary 
lesions

7 [115]

20 Nebulized exosomes 
derived from allogenic 
adipose tissue mesenchymal 
stromal cells in patients 
with severe COVID-19: A 
pilot study

NCT 04276987 Phase 2 Severe COVID-
19

HAMSCs-
Exo

Nebulized, consec-
utively 5 d

2.0 × 108 
nanovesicles

↓CRP, IL-6, 
lymphocyte counts, 
and LDH

Massive infilt-
ration and 
ground-glass 
opacity 
disappeared

7 [114]

CRP: C-reactive protein; ESR: Erythrocyte sedimentation rate; HAMSCs-Exo: Human adipose mesenchymal stem cells-derived exosomes; IP-10: Interferon gamma-induced protein 10; LDH: Lactate dehydrogenase; MCP-1: Monocyte 
chemoattractant protein-1; MCP1-CCL2: Monocyte chemoattractant protein-1/c-c motif chemokine ligand 2; MIP-1: Macrophage inflammatory protein-1; NA-UC-MSC: Normoxic-allogenic umbilical cord mesenchymal stem cell; 
ORBCEL-C: CD362-enriched, umbilical cord-derived mesenchymal stem cells; COVID-19: Coronavirus disease 2019; NK: Natural killer; IL: Interleukin; IFN-γ: Interferon-γ; TNF-α: Tumor necrosis factor-α; MSCs-Exo: Mesenchymal stem 
cells derived exosomes; TGF-β: Transforming growth factor β; MSCs: Mesenchymal stem cells; ARDS: Acute respiratory distress syndrome; PL-MSCs: Placenta-derived mesenchymal stem cells.

High doses of MSCs may trigger cell transplantation-related reactions, including fever, headache, nausea, vomiting, or 
severe anaphylactic reactions[108]; (3) Thrombosis and bleeding risk: High-dose MSCs are associated with an increased 
risk of thrombosis and bleeding, leading to deep vein thrombosis or bleeding events[109]; (4) Organ damage: High doses 
of MSCs may trigger inappropriate cell proliferation or differentiation in the body, affecting the function of the kidneys, 
heart, lungs, or other vital organs[110]; and (5) Risk of neoplasia: High doses of MSCs may increase the risk of neoplasia 
and involve abnormal proliferation of MSCs or tumor formation[111]. Overall, when deciding on the therapeutic dose, 
physicians must carefully consider the patient's condition and potential risks and closely monitor the patient’s response 
to ensure the safety and efficacy of the treatment.
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Route of administration
Currently, the treatment of COVID-19 by MSCs and MSCs-Exo mainly includes intravenous injection of MSCs and 
nebulization of MSCs-Exo. Both methods have their advantages and disadvantages. Intravenous infusion of MSCs is 
typically used for treating systemic diseases or conditions that require circulation through the bloodstream to various 
parts of the body, such as certain types of autoimmune diseases, inflammatory diseases, tissue injury repair, and some 
degenerative diseases[75,112]. MSCs can repair multiple organ damage induced by COVID-19. However, since MSCs are 
live cells, their infusion can trigger immune system responses in the body, leading to varying degrees of side effects like 
inflammatory reactions and allergic responses. Additionally, MSCs may not be evenly distributed in the body after 
infusion. In some instances, specific areas affected by a disease may not receive an adequate concentration of cells, 
resulting in suboptimal therapeutic effects[113]. Primarily, the application of nebulized MSCs-Exo is targeted toward 
treating respiratory conditions, including chronic obstructive pulmonary disease, asthma, and pulmonary fibrosis[114]. 
Exosomes can directly target the lungs and upper respiratory tract through nebulization, offering high therapeutic effect-
iveness for pulmonary diseases. Some studies have performed MSCs-Exo nebulization in patients with mild and severe 
COVID-19, which promoted the absorption of lung lesions and shortened the length of hospital stay in patients with mild 
COVID-19[114,115]. Nebulization is a non-invasive method of administration, usually more acceptable to patients. It is 
proved that MSCs-Exo can be used as a safe and feasible new approach for the treatment of COVID-19[95,96]. However, 
nebulized MSCs-Exo is limited to treating respiratory system-related diseases, and the mechanism of action of exosomes 
may not be as broad as that of MSCs, offering more specificity. In summary, the clinical application should be based on 
the specific conditions of patients and disease characteristics to choose the appropriate treatment.

Monitoring
Patients should receive regular medical monitoring during treatment with MSCs and MSCs-Exo, including respiratory 
status, oxygen saturation, and lung imaging tests. Regular medical monitoring helps to determine the success of the 
treatment and further treatment as needed. The study demonstrated that after MSC therapy, significant radiological 
improvements in lung computed tomography (CT) scans were observed in patients, with a notable reduction in 
pulmonary complications. Some patients showed almost complete resolution of opacities without residual fibrosis 50 d 
post-treatment. One patient experiencing acute renal failure, pulmonary edema, and bilateral multiple effusions showed a 
significant reduction in COVID-19-related turbidity post-treatment[106]. Soetjahjo et al[104] showed that patients treated 
with UC-MSCs (normoxic-allogenic-UC-MSC) improved oxygenation index and oxygen saturation on day 22 of 
treatment. The levels of three key inflammatory markers (procalcitonin, erythrocyte sedimentation rate, and C-reactive 
protein) were also tracked: C-reactive protein showed a significant reduction in both MSCs and controls after 22 d. Also, 
this treatment regimen improved oxygenation index and oxygen saturation, contributing to lung healing. Significant 
improvements were also seen in the levels of biomarkers closely associated with severe and critical COVID-19[104]. A 
clinical study demonstrated that a mildly ill patient’s first chest CT examination revealed an isolated nodule outside the 
lower lobe of the left lung. The second examination showed a significant reduction in the density and volume of the 
nodule after MSCs-Exo nebulization treatment, which promoted the absorption of the lung lesion, did not cause acute 
allergic or secondary allergic reactions, and shortened the hospitalization time[115]. In summary, we believe using MSCs 
and MSCs-Exo in COVID-19 patients is effective.

CHALLENGES AND SOLUTIONS
Although MSCs and MSCs-Exo have great potential for the treatment of COVID-19, the controversial nature of using 
them as emerging agents for clinical therapy remains, such as instability in the quality of different batches of MSCs and 
MSCs-Exo and uncertainty in predicting effects. In addition, due to the unique properties of MSCs and MSCs-Exo, their 
manufacturing, transportation, and application processes are significantly different from those of standard drugs. 
Ensuring rigorous quality control at each stage of these processes is critical to maintaining the integrity and efficacy of 
these products[97]. Therefore, the Scientific Committee of the International Society for Cellular Therapy emphasized the 
importance of considering key factors to improve clinical success and gain wider acceptance. Similarly, in China, 
conducting stem cell trials mandates adherence to the “Guidelines for Quality Control of Stem Cell Preparation and 
Preclinical Research (for Trial Implementation)” and the “Stem Cell Clinical Research Management Methods”. This 
ensures that MSC therapeutic trials are performed in compliance with international standards.

Meanwhile, scientists are exploring various innovative drug delivery methods to enhance the clinical application of 
MSCs and MSCs-Exo. Existing methods of delivering MSCs into the body for therapeutic purposes include direct 
intracellular internalization of nanocarriers and autologous MSC encapsulation in combination with drug administration. 
However, the complex intracellular environment may degrade the internalized nanocarriers and affect the physiological 
properties of the cellular carriers. Several studies have constructed a nanoengineering platform based on MSCs, which 
solved the problem of nanocarriers being degraded by the bio coupling of MSCs and type I collagenase-modified 
liposomes loaded with Nidanib (MSCs-Lip@NCAF) and adhered to the surface of MSCs through specific biologic ligand-
receptor interactions[116]. Autologous MSC-embedded tissue repair coagulant (Tissucol Duo®) has also been feasible, 
safe, and potentially clinically effective as a prophylactic alternative to prevent prolonged air leakage after pneumon-
ectomy in high-risk patients[117]. In summary, the combination of MSCs piggybacked with corresponding drugs or the 
use of MSCs themselves as carrier-embedded drugs also has great therapeutic potential. Especially in the face of a more 
infectious pandemic with faster viral mutation, the number of clinical trials on the safety and efficacy of COVID-19 
treatment worldwide is still far from enough, resulting in the exact efficacy and regulatory mechanisms of MSCs and 
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MSCs-Exo in the clinical treatment of COVID-19 patients with severe illnesses are still in the early stage of exploration. In 
addition, besides mainly attacking the respiratory tract and lungs, the SARS-CoV-2 virus also affects the heart, kidneys, 
nervous system, and gastrointestinal tract to varying degrees. To evaluate the safety and effectiveness of MSCs and 
MSCs-Exo in targeting different organs through various delivery routes, more preclinical and randomized controlled 
clinical trials are needed. This will help to achieve a better therapeutic effect of MSCs and MSCs-Exo in the treatment of 
COVID-19 and also provide a more theoretical reference.

CONCLUSION
With the normalization of the COVID-19 pandemic, developing practical therapeutic approaches is critical to reducing 
the healthcare system’s stresses. The homing, immunomodulation, regenerative repair, and antifibrotic effects of MSCs 
and MSCs-Exo promote the repair of damaged tissues, making MSCs and MSCs-Exo promising to be a potent therapeutic 
tool in the treatment of COVID-19. An in-depth understanding of their therapeutic mechanisms and optimization of the 
application process are crucial, and future studies should focus on improving the safety and efficacy of these therapeutic 
regimens to make substantial progress in the fight against COVID-19.
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