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Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver dis-
ease worldwide. NAFLD comprises a continuum of liver abnormalities from non-
alcoholic fatty liver to nonalcoholic steatohepatitis, and can even lead to cirrhosis 
and liver cancer. However, a well-established treatment for NAFLD has yet to be 
identified. Exosomes have become an ideal drug delivery tool because of their 
high transmissibility, low immunogenicity, easy accessibility and targeting. 
Exosomes with specific modifications, known as engineered exosomes, have the 
potential to treat a variety of diseases. Here, we review the treatment of NAFLD 
with engineered exosomes and the potential use of exosomes as biomarkers and 
therapeutic targets for NAFLD.
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Core Tip: Nonalcoholic fatty liver disease (NAFLD) is the fastest growing chronic disease in the world. As 
the disease progresses, NAFLD can lead to liver fibrosis, cirrhosis and even liver cancer. However, a well-
established treatment for NAFLD has yet to be identified. Exosomes are small extracellular vesicles 
secreted by cells. Owing to their high delivery efficiency and biocompatibility, exosomes are expected to 
become a new means of drug delivery and precise treatment for a variety of diseases, including NAFLD.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease that is prevalent worldwide affecting at 
least a quarter of the population[1]. NAFLD is a continuum of liver abnormalities from nonalcoholic 
fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) that can even lead to cirrhosis and liver 
cancer. NAFL is reversible, whereas NASH with cirrhosis is difficult to reverse[2]. Therefore, it is critical 
to explore the pathogenesis of NAFLD and identify therapeutic targets to treat or prevent its 
development. Exosomes are extracellular vesicles with a particle size of 30-150 nm that play a crucial 
role in communication between cells[3]. Some macromolecules such as RNA or proteins in exosomes are 
associated with the occurrence and development of liver-related diseases and can be used as potential 
molecular markers in the diagnosis of NAFLD[4]. Processed and modified exosomes (known as 
engineered exosomes) may also facilitate the study of NAFLD and the development of new therapeutic 
strategies[5]. In this review, the mechanism and function of engineered exosomes in the development of 
NAFLD are reviewed (Figure 1).

ENGINEERED EXOSOMES AND LIPID METABOLISM
The liver is the largest metabolic organ and a hub of lipid metabolism. Abnormal changes in lipid 
metabolism in the liver lead to the development of metabolic diseases[6]. A research team found that the 
release of exosomes in cultured astrocytes from apolipoprotein E knockout mice was significantly 
reduced compared to wild-type controls, and a PI3K inhibitor (LY294002) rescued the release of 
exosomes. They confirmed that the release of exosomes was regulated by cellular cholesterol through 
stimulation of the PI3K/Akt signalling pathway[7].

Li et al[8] systematically screened for microRNA expression using high-throughput small RNA 
sequencing and found that miR-199a-5p was significantly upregulated in adipose tissue in a mouse 
model of high-fat diet (HFD). Further studies confirmed that exosomal miR-199a-5p promoted lipid 
accumulation in the liver through induction of macrophage stimulating 1 (MST1) expression and fatty 
acid metabolism. Cheng et al[9] found that exosomal miR-627-5p reversed insulin resistance, prevented 
liver injury, normalized glucose and lipid metabolism and reduced lipid deposition in a rat model of 
NAFLD.

Brown adipose tissue (BAT) strongly promotes energy expenditure and shows good potential in the 
treatment of obesity. Zhou et al[10] treated HFD-fed mice with engineered exosomes derived from the 
serum of young healthy mice or from BAT. They found that treatment with BAT exosomes significantly 
promoted oxygen consumption in recipient cells, thus alleviating metabolic syndrome in HFD-fed mice.

Li et al[11] used a low-density lipoprotein receptor-deficient mouse (Ldlr mouse) as a model for 
hypercholesterolemia. Ldlr mRNA was encapsulated into exosomes by overexpression of Ldlr in donor 
AML12 mouse hepatocytes. The authors found that engineered exosomes loaded with Ldlr mRNA 
could restore the expression of Ldlr in the livers of Ldlr-deficient mice and rescue hypercholesterolemia. 
This study suggests that engineered exosomes may be an effective therapy for patients with hypercho-
lesterolemia.

ENGINEERED EXOSOMES AND INSULIN RESISTANCE
Insulin resistance is now believed to play a key role in the onset and progression of NAFLD[12]. A HFD 
reduces insulin sensitivity. Kumar et al[13] found that feeding a HFD changed the lipid composition of 
intestinal exosomes. These exosomes were found to be absorbed by macrophages and hepatocytes, 
resulting in inhibition of the insulin signalling pathway. Castaño et al[14] found that obesity can alter the 
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Figure 1 Diagram shows the correlation between nonalcoholic fatty liver disease and engineered exosome. MVB: Multivesicular body; EV: 
Extracellular vesicles; NASH: Nonalcoholic steatohepatitis; NAFL: Nonalcoholic fatty liver; STAT3: Signal transducer and activator of transcription 3; RISC: RNA-
induced silencing complex; MST1: Mammalian STE20-like kinase 1; USP7: Ubiquitin specific peptidase 7; KLF3: Kruppel-like factor 3; PINK: PETN induced kinase 1; 
PI3K: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase; Akt: Protein kinase B.

expression and composition of miRNAs in mouse plasma exosomes. Ying et al[15] found that miR-690, 
an exosome-derived miRNA from M2-polarized macrophages, improved insulin sensitivity in obese 
mice. Su et al[16] found that exosomes derived from the bone marrow mesenchymal stem cells (BM-
MSCs) of aged mice could be ingested by fat, muscle and liver cells, leading to insulin resistance in vivo 
and in vitro. The authors found that the amount of miR-29b-3p in exosomes released by BM-MSCs was 
significantly increased in aged mice. Furthermore, they found that inhibition of miR-29b-3p with an 
aptamer-mediated nanocomposite delivery system improved insulin resistance in aged mice.

ENGINEERED EXOSOMES AND LIPOTOXICITY
Lipotoxicity promotes proinflammatory M1 polarization of liver macrophages during the development 
of NAFLD[17,18]. Liu et al[19] found that miR-192-5p-rich hepatocyte-exosomes induced by lipotoxic 
injury promoted macrophage M1 polarization and liver inflammation through Rictor/Akt/forkhead 
box transcription factor O1 signalling. Zhao et al[20] found that cholesterol-induced lysosomal 
dysfunction increased exosome release from hepatocytes, leading to M1 polarization and macrophage-
induced inflammation in a miR-122-5p-dependent manner. Human umbilical cord mesenchymal stem 
cells (HUC-MSCs) are increasingly being studied in clinical trials of end-stage liver disease due to their 
excellent tissue repair and anti-inflammatory effects. Shi et al[21] found that HUC-MSC-derived 
exosomes could protect against methionine- and choline-deficient L-amino acid diet (MCD)-induced 
NASH.

Lipotoxicity can damage mitochondria and induce oxidative stress during the progression of NAFLD
[22,23]. Studies have shown that adipocytes respond to mitochondrial stress by rapidly and vigorously 
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releasing exosomes[24]. Similarly, exosomes derived from chemically induced human hepatic 
progenitors inhibit cell death induced by oxidative stress[25].

ENGINEERED EXOSOMES AND AUTOPHAGY
Autophagy is a process in which cells degrade and metabolize their own damaged organelles or protein 
aggregates that plays a key role in maintaining liver homeostasis[26]. Increasing evidence suggests that 
autophagy plays a very important role in lipid metabolism. Autophagy mainly protects cells and 
regulates inflammation in NAFLD[26]. Because autophagy and exosomal biogenesis share common 
elements, some studies have found that plasma exosomal levels are higher in NAFLD patients than in 
healthy controls[27]. Luo et al[28] found that miR-27a inhibited mitochondrial autophagy and promoted 
NAFLD-associated liver fibrosis by negatively regulating PINK1 expression via lipotoxic hepatocyte 
exosomes. A research team established a model of hepatocyte injury and apoptosis induced by D-
galactosamine and lipopolysaccharide (D-GalN/LPS) to study the protective effect of bone marrow 
mesenchymal stem cell (BMSC)-derived exosomes on liver injury. They found that BMSC-derived 
exosomes attenuated D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro[29]. 
Similar studies have shown that upregulation of miR-96-5p in BMSCs and their exosomes ameliorated 
NASH via caspase-2[30].

ENGINEERED EXOSOMES AND LIVER FIBROSIS
It is generally believed that during the development of NAFLD, liver-related cells are replaced by 
fibrotic scar tissue, giving rise to liver fibrosis or cirrhosis, which are associated with poor prognosis and 
mortality in patients with NASH[2]. The Notch signalling pathway is a key mediator of cellular differ-
entiation, proliferation and apoptosis[31]. We designed hairpin-type decoy oligodeoxynucleotides 
(ODNs) for RBP-J to inhibit the activation of Notch signalling. ODNs were loaded into HEK293T-
derived exosomes by electroporation. Furthermore, we observed that tail vein-injected exosomes were 
mainly taken up by hepatic macrophages in mice with hepatic fibrosis. RBP-J decoy ODNs delivered by 
exosomes efficiently inhibited Notch signalling in macrophages and ameliorated liver fibrosis in mice
[32].

Hou et al[33] found that myeloid cell-specific IL-6 signalling promoted miR-223-enriched exosome 
production and attenuated NAFLD-associated fibrosis. Tang et al[34] found that exosomes embedded 
with siRNAs or antisense oligonucleotides targeting signal transducer and activator of transcription 3 
(STAT3) could attenuate liver fibrosis. Gao et al[35] showed that Kupffer cells produced endogenous 
miR-690 and shuttled this miRNA to other hepatocytes through exosomal secretion. Treatment with 
miR-690 inhibitors reduced fibrosis and steatosis in a NASH model. Wang et al[36] found that miR-6766-
3p-rich 3D human embryonic stem cell (hESC) exosomes could ameliorate liver fibrosis by targeting the 
TGFβ RII-SMADS pathway in hepatic stellate cells. Ji et al[37] developed an exosome-liposome hybrid 
loaded with clodronate-nintedanib that impaired hepatic fibrosis by reducing the activation of Kupffer 
cells.

CRISPR-Cas9 gene editing has become a powerful therapeutic technology. However, there is a lack of 
safe and effective in vivo delivery systems for CRISPR-Cas9, especially for tissue-specific vectors[38]. 
Luo et al[39] used exosome-mediated CRISPR/dCas9-VP64 delivery to reprogram hepatic stellate cells 
to construct engineered exosomes for the treatment of liver fibrosis. Similarly, Wan et al[40] delivered 
exosome-mediated Cas9 ribonucleoprotein complexes for tissue-specific gene therapy in liver disease.

ENGINEERED EXOSOMES AND LIVER CANCER
Without timely intervention, NAFLD inevitably results in liver cancer[41]. Liver cancer is the fourth 
leading cause of cancer-related death worldwide and occurs in patients with various chronic liver 
diseases[42]. To date, the exact pathogenesis of NAFLD-induced liver cancer is not fully understood, but 
may involve DNA damage responses, inflammation, autophagy, and disruption of the gut microbiota
[41].

Adipose tissue is known to play a role in energy storage and metabolic regulation by secreting 
adipokines[43]. Studies have demonstrated that exosomal circRNA secreted by adipocytes promotes 
tumour growth by inhibiting miR-34a and activating the USP7/Cyclin A2 signalling pathway[44].

An acidic microenvironment has been shown to promote the release of exosomes, which are 
considered to be cell-to-cell communication agents involved in cancer progression and metastasis[45]. 
Tian et al[46] found that exosomal miR-21 and miR-10b induced by the acidic microenvironment in liver 
cancer could promote cancer cell proliferation and metastasis and be used as prognostic molecular 
markers and therapeutic targets for liver cancer.
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Macrophage-derived exosomes play multiple roles in cancer initiation and progression[47]. Zhang et 
al[48] found that exosomes derived from RBP-J overexpressing macrophages inhibited the progression 
of liver cancer by miR-499b-5p/JAM3. M2 macrophages can influence tumour development by secreting 
various cytokines, including exosomes. Some studies suggest that M2 macrophage-derived exosomes 
modified by miR-660-5p-related oligonucleotides enhanced the development of hepatocellular 
carcinoma by regulating KLF3[49].

ENGINEERED EXOSOMES INVOLVED IN THE DIAGNOSIS OF NAFLD
Exosomes can be derived from healthy and stressed cells to provide a snapshot of the cell of origin 
under physiological and pathological conditions. Hepatocyte-derived exosomes released from stressed/
injured hepatocytes have been identified as a partial cause of liver disease progression and liver injury, 
so circulating exosomes may serve as biomarkers of NAFLD. Nanopasmon-enhanced scattering of gold 
nanoparticles coupled with hepatocyte-specific antibodies was used to identify hepatocyte-derived 
exosomes[50]. Furthermore, microarray analysis of exosomal miRNAs isolated from the serum of 41 
patients with NAFLD (diagnosed using liver biopsy) suggested that serum exosomal miRNAs could be 
used to assess the severity of NAFLD and identify potential targets for NAFLD treatment[33]. One of 
the determinants of liver degeneration in the progression of NAFLD is Wnt/frizzled (FZD) signalling; 
for example, FZD7 delivered by plasma-derived exosomes is a good candidate for a novel and effective 
biomarker for the diagnosis and prognosis of NAFLD[51].

CONCLUSION
The incidence of NAFLD is rapidly increasing with changes in lifestyle and dietary habits[1]. Exosomes 
not only mediate communication between cells but can also be engineered to deliver specific substances. 
Engineered exosomes have shown some effects on NAFLD in animal experiments. Owing to their low 
immunogenicity and liver targeting[52,53], engineered exosomes have great potential to treat NAFLD.
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