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Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction)-associated 
fatty liver disease is the leading cause of chronic liver diseases defined as a 
disease spectrum comprising hepatic steatosis, non-alcoholic steatohepatitis 
(NASH), liver fibrosis, cirrhosis, and hepatic carcinoma. NASH, characterized by 
hepatocyte injury, steatosis, inflammation, and fibrosis, is associated with NAFLD 
prognosis. Ductular reaction (DR) is a common compensatory reaction associated 
with liver injury, which involves the hepatic progenitor cells (HPCs), hepatic 
stellate cells, myofibroblasts, inflammatory cells (such as macrophages), and their 
secreted substances. Recently, several studies have shown that the extent of DR 
parallels the stage of NASH and fibrosis. This review summarizes previous 
research on the correlation between DR and NASH, the potential interplay 
mechanism driving HPC differentiation, and NASH progression.
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Core Tip: This is the first review focusing on recent advances in the relationship of hepatic cells with 
ductular reaction (DR), in fatty liver-related steatohepatitis and fibrosis. Recent advances in DR, a 
common compensatory reaction in liver injury, shed light on the effects of hepatic progenitor cells, hepatic 
stellate cells, myofibroblasts, inflammatory cells, and their secreted substance. In particular, hepatic 
progenitor cell differentiation was thoroughly discussed in developing steatohepatitis and fibrosis. This 
review summarizes the correlation between DR and steatohepatitis and fibrosis, the advanced stages of 
non-alcoholic fatty liver disease, or metabolic (dysfunction) related fatty liver disease.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD), which affects approximately 25% of adults worldwide, is the 
leading cause of chronic liver diseases[1]. NAFLD refers to a disease spectrum including hepatic 
steatosis, non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and hepatic carcinoma[2]. In 
early 2020, an international expert group led a consensus-driven process to develop a more appropriate 
term for NAFLD, and the term “metabolic (dysfunction) related fatty liver disease (MAFLD)” was 
recommended[3]. NASH/MASH is characterized by ≥ 5% hepatic steatosis, hepatocyte injury or 
necrosis, and inflammation[2,4]. NASH is a critical stage in NAFLD development and is associated with 
NAFLD prognosis; thus, it has become the focus of NAFLD research. NASH is the second most common 
indication for liver transplantation in the United States[1]. The occurrence and progress of NASH are 
related to several factors such as glucose and lipid metabolism, immune response, and gut microbiota[5-
7]. The diagnosis and severity classification of NASH depends on histopathological examination. The 
main pathological features of NASH are hepatocyte balloon degeneration, inflammatory infiltration, 
Mallory-Den K corpuscle, and zone 3 fibrosis[2,8]. Some studies have shown that neutrophil infiltration 
and portal inflammatory infiltration are also characteristics of NASH[9,10].

Ductular reaction (DR) is a compensatory reaction commonly detected in various liver injuries[11], 
involving the participation of hepatic progenitor cells (HPCs), hepatic stellate cells (HSCs), myofibro-
blasts, inflammatory cells (such as macrophages), and their secreted substances. Among them, the 
proliferation and differentiation of HPCs are the core of DR[12]. DR is commonly found in the livers of 
NASH patients. Moreover, there is a parallel relationship between DR and the severity of inflammation 
and fibrosis in NASH patients[13-15], suggesting that DR has an important role in the progression of 
NASH.

Based on clinical investigations, the present review summarizes the correlation between DR and 
NASH. It discusses the shaped HPC differentiation fate in the context of NASH and its influence on 
NASH progression.

OVERVIEW OF DUCTULAR REACTION AND CORRELATION BETWEEN HPC AND DR
DR is a compensatory reaction in the portal area caused by biliary diseases, viral hepatitis, NAFLD, 
acute fulminant liver failure, etc[16]. DR is heterogeneous in both pathology and pathophysiology. 
Desmet divided DR into four types based on pathology: Type 1, Type 2A, Type 2B, and Type 3[17].

Type 1 is predominant in acute complete bile duct (BD) obstruction, alpha-naphtyl isothiocyanate 
intoxication, and cytokine (e.g., interleukin 6)-induced ductular increase. It results from the proliferation 
of preexisting cholangiocytes. Type 1 causes the biliary tubes to elongate, branch out, and widen their 
lumens, allowing them to adjust to the swelling and inflammation of the portal mesenchyme. Type 2A 
has been interpreted as “ductular metaplasia of hepatocytes.” It is often detected in periportal areas, 
most characteristically, in chronic cholestatic conditions. In lasting cholestasis, bile acids increase the 
number of cholangiocytes, which promote the development of pericellular fibrosis, and in this way, it 
enhances bile ductular metaplasia of hepatocytes. Of note, Type 1 and Type 2A can be reversed when 
the causative trigger is eliminated; the ductular structures are cleared by apoptosis; and the associated 
fibrosis is ameliorated to a considerable extent. Prolonged hypoxia induces Type 2B, which manifests in 
areas of parenchymal hypoxia, specifically in the centrolobular region of liver lobules and the centro-
nodular region of cirrhotic nodules. Although often slower in development, its microscopic pattern is 
comparable to that of Type 2A in terms of ductular metaplasia or dedifferentiation of mature 
hepatocytes, which is associated with myofibroblast-induced fibrosis. Type 3 occurs in cases of massive 
loss of parenchymal cells and is characterized by the activation and proliferation of HPCs located in the 
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ductules and canals of Hering. As bipotential cells, HPCs can differentiate into hepatocytes and BD cells
[17].

There is consensus that the fate of HPC differentiation is the core of DR, determining the pathological 
type of DR and affecting disease development[18]. Epithelial cell adhesion molecule and the neural cell 
adhesion molecule/sex-determining region Y-Box 9 (SOX9) have been previously considered markers of 
HPCs, cytokeratin-7 (CK7) and CK19 have been used to identify cholangiocytes, and albumin and 
hepatic nuclear factor 4-alpha have been considered markers of hepatocytes[19-21]. HPCs located in the 
Hering canal typically differentiate into biliary cells in a normal liver[18] but do not lead to DR. HPCs 
are activated and differentiate into hepatocytes or biliary cells during liver injury. For example, HPCs 
differentiate into hepatocytes in acute fulminant hepatic failure and contribute to liver regeneration[22,
23]. CK7 immunohistochemistry is also positive in HPCs, which can predict liver injury severity; for 
instance, HPCs differentiate into CK7+ cells in the portal area in chronic hepatitis C and exacerbate liver 
injury[13,14,24-26]. Furthermore, a similar phenomenon has been found in hepatitis B virus-injected 
murine models[27]. In addition, DR is significantly associated with hepatocellular carcinoma 
peritumoral hepatic inflammation, liver fibrosis, tumor node metastasis classification stage, and poor 
prognosis[28]. Hepatocyte-derived ductular HPCs can give rise to hepatocellular carcinoma via 
concomitant activation of yes-associated protein (YAP) and transcriptional coactivator with PDZ-
binding motif transcription factors. Autophagy suppresses the formation of hepatocyte-derived cancer-
initiating HPCs in the liver[29].

HPCs are activated in the majority of liver diseases[30]. During liver injury, a ubiquitous DR affects 
the differentiation vs dedifferentiation type of HPCs, depending on the severity of the liver injury[31]. 
Proliferating BDs in DR are misshapen, lack an apparent lumen, and are associated with increased 
portal inflammation and fibrosis[19,32]. It has been previously demonstrated that HPC activation is 
sufficient to regenerate a large proportion of the liver parenchyma using targeted deletion of mouse 
double minute 2 (MDM2) in mouse hepatocytes. This kind of HPC activation may be induced by the 
tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 
pathway[33]. Interestingly, in the hepatocyte-specific β-catenin knockout model, hepatocytes lose their 
regenerative capacity, and cholangiocytes still express β-catenin. β-catenin-positive cholangiocytes 
(differentiated HPCs) differentiate into β-catenin-positive small hepatocytes, which then proliferate and 
repopulate the liver[34,35]. A previous study reported that YAP levels are increased in NAFLD patients 
and NAFLD mouse models[36]. A recent study showed that the DR reaction is more intense and 
hepatocytes trans-differentiate into cholangiocytes protected from cholestatic damage by activating 
Hippo-YAP in the Tjp2 cKO mouse model (more susceptible to cholic acid-induced liver injury) fed 3,5-
diethoxycarbonyl-1,4-dihydrocollidine (DDC)[37]. A murine BD ligation model of liver fibrosis showed 
that heme oxygenase-1-mediated pro-resolution M2 polarization of macrophages protects the liver from 
excessive DR and fibrosis with the ligand of numb protein X1 as the key downstream factor[38]. 
Interestingly, recent studies have shown that HPCs can promote angiogenesis by secreting vascular 
endothelial growth factor (VEGF) via the secretin/secretin receptor/microRNA 125b (miR-125b) axis
[39]. However, recent studies have shown that DR cells can promote angiogenesis through slit guidance 
ligand 2-roundabout 1 signaling channels in various chronic liver diseases (CLDs), contrary to VEGF
[40]. Another study showed that the signaling of apelin/APJ (G protein-coupled apelin receptor) can 
promote intrahepatic angiogenesis[41].

The impact of DR on liver diseases is a double-edged sword. HPCs can be activated and differen-
tiated into hepatocytes to participate in liver regeneration in the case of massive loss of parenchymal 
cells. Conversely, the activation of HPCs may play a role in the activation of HSCs and the infiltration of 
inflammatory cells in DR in most CLDs, which can lead to further liver injury, including cirrhosis and 
tumorigenesis[14,25,42,43].

Correlation between NASH and DR
A state of NAFLD begins with healthy liver parenchyma (steatosis in < 5% of hepatocytes) and then 
progresses to steatosis in > 5% of hepatocytes with the initiation of DR. The condition progresses to a 
severe stage with scar tissue accumulation, elevated steatosis, and hepatic ballooning[43]. In recent 
years, DR has attracted considerable attention in NASH research. It is worth noting that although DR 
can assist in repairing liver injury by aiding in HPC activation and differentiation, its impact on the 
progression of chronic liver disease associated with NASH may not always be favorable, especially 
when liver regeneration capacity is impaired. In fact, in some cases, DR-induced differentiation may 
even contribute to the occurrence and progression of inflammation and liver fibrosis in NASH. In 2007, 
Richardson et al[14] analyzed data from 118 liver specimens (107 from NAFLD patients and 11 from 
normal liver) and found that DR commonly existed in NASH, especially in patients with fibrosis. 
Multivariate analysis demonstrated that the extent of DR was independently associated with hepatocyte 
replicative arrest [odds ratio (OR) = 6.5] and fibrosis stage (OR = 17.9). Moreover, they further found 
that the expansion of HPCs was significantly correlated with NASH activity score[14]. In 2013, based on 
biopsy specimens from 56 adults with NAFLD (10 with steatosis and 46 with NASH) from Austria and 
the United States, Skoien et al[44] found that both centrilobular fibrosis and portal fibrosis stages were 
positively associated with the extent of DR. In 2018, multicenter observational studies of 90 NAFLD 
patients showed that DR was identified in 90% of biopsy samples, and its extent was correlated with 
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fibrosis stage[15]. Similarly, Gadd et al[13] also found that DR appeared in almost all NASH patients, 
and its grade was significantly associated with pathological liver progression. Similar to the results in 
adult NAFLD, DR can also be found in pediatric NAFLD, and its extent and/or HPC expansion were 
significantly correlated with fibrosis degree[44-46].

DR also exists in animal NAFLD models. In an 8-wk methionine/choline-deficient (MCD) diet mouse 
model and a 16-wk western diet mouse model, the number of YAP+, CK19+ reactive-appearing 
ductular cells, and HPCs were significantly increased with the severity of hepatocyte injury and inflam-
mation[47]. A recent study based on mouse models indicated that during NASH development, YAP 
activation occurred earlier than DR but they were spatiotemporally correlated. Murine YAP activation 
may promote hepatocyte dedifferentiation during NASH development[48]. Morell et al[49] also 
established an 8-wk MCD diet mouse model and found that DR extent and HPC number increased 
steadily over time in the portal and lobular areas. Furthermore, the extent of DR rose significantly in a 
12-wk western diet and carbon tetrachloride-treated mouse model, which led to severe NASH-related 
fibrosis. DR can also occur in other NAFLD animal models, such as rats and monkeys[50,51]. Although 
some animal models are particularly useful, especially for studying liver regeneration, many features of 
DR in humans are significantly different from those of animals[18]. The contrasting anatomical features 
of the two species likely account for this distinction. In humans, cholangiocytes are classified based on 
the diameter of the biliary tract, which can vary from small to medium to large, resulting in different 
sizes of the cells. Unlike humans, rodents have small BDs and large BDs, lined by small BDs and large 
BD cells, respectively, with distinct functional properties[52].

Interestingly, the location of DR varies in different NAFLD patient populations. In pediatric NAFLD 
patients, DR often appears in the portal/periportal area. In a retrospective study involving 30 children 
and adolescents with biopsy-proven NAFLD, CK7-positive HPCs localized at the portal-parenchymal 
interface, i.e. the periportal site[45]. Similarly, a cohort study of 32 children and adolescents with biopsy-
proven NAFLD showed that DR commonly occurred in the portal area[46]. In another pediatric NAFLD 
study, the authors gathered 38 biopsy specimens from NASH children in three United Kingdom 
medical centers. They found DR at the interface between the parenchyma and portal areas in 36 NASH 
patients[44]. Similarly, portal DR can also occur in adult NAFLD patients[13-15]. However, in adult 
NAFLD patients, CK7+ cells and/or CK7+ structures can be found in the centrilobular area. 
Interestingly, CK7+ cells and/or CK7+ structures in centrilobular zones universally occurred in several 
other CLDs (including chronic viral hepatitis, autoimmune hepatitis, drug-induced liver injury, etc), 
which was termed centrilobular DR[53-55]. Both centrilobular DR and periportal DR were also found in 
adult NAFLD studies and showed a significant correlation with NASH progression[15,55,56]. 
Importantly, centrilobular DR was also located, and the correlation of fibrosis stage with centrilobular 
DR was much stronger than with periportal DR (regression coefficient: 1.856 vs 0.646)[15].

The difference in DR localization between pediatric NAFLD and adult NAFLD is plausible. In 
children, pediatric NASH is characterized by portal inflammation and/or fibrosis[57-59]. Since it is 
acknowledged that periportal DR is closely related to NASH progression in pediatric NAFLD, the 
localization of DR in the portal area is reasonable. The concept of centrilobular DR seemingly 
contradicts the localization characteristic (portal area) in the classic DR definition in adults. However, 
this phenomenon might be explained from the following two perspectives. From the pathology 
standpoint, centrilobular fibrosis, i.e. zone 3 fibrosis, is one of the typical pathological features of adult 
NASH[8]. Therefore, DR – a process related to fibrosis – would emerge in the centrilobular area by 
fibrosis location. Regarding the underlying pathophysiological mechanism, it has been postulated that 
CK7+ cells/structures in centrilobular DR might stem from hepatocytes through metaplastic response 
and/or dedifferentiation[55,60]. Hence, the concept of DR in NAFLD should be expanded to cover 
centrilobular DR[17]. In a cross-sectional analysis, it was found that centrilobular DR was highly 
correlated with the stage of fibrosis in adult non-alcoholic steatohepatitis[15]. In addition, centrilobular 
was the dominant injury pattern, presumably due to pressure induced by mechanical injury[53]. 
Besides, in NASH, the different underlying impact between centrilobular DR and periportal DR on 
disease development remains to be clarified.

DR microenvironment and HPC differentiation fate in NASH
The DR microenvironment, composed of parenchymal cells, mesenchymal cells, inflammatory cells, and 
their secreted substances, participates in the activation, proliferation, and differentiation of HPCs[12,61,
62]. Different components drive HPC differentiation fate in different directions (Figure 1). Previous 
studies have indicated that HPCs reside in a specialized microenvironment (niche), which is crucial in 
determining their cell fate. Laminins, as part of the extracellular matrix (ECM), control the expansion of 
HPCs in an undifferentiated state, and hence DR, during liver injury. Other studies have demonstrated 
that HSCs and myofibroblasts might play an essential role in the differentiation of HPCs towards the 
cholangiocyte cell phenotype, while macrophages may participate in HPC differentiation into 
hepatocyte phenotypes[12,63]. A previous study showed that estimated glomerular filtration rate 
(EGFR) ligands were present in the liver microenvironment. In animal models lacking EGFR catalytic 
activity, the expansion of HPCs can be observed after DDC-induced liver damage, indicating that the 
lack of EGFR may promote HPC differentiation into hepatocytes, and thus liver regeneration[64]. 
However, it is noteworthy that the differentiation of HPCs is not modulated by a single factor but by a 
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Figure 1  Factors contributing to the differentiation of hepatic progenitor cells in non-alcoholic fatty liver disease and potential pathways 
associated with hepatic progenitor cells-mediated non-alcoholic fatty liver disease progression.

complicated cellular and molecular network in liver diseases. HPCs tend to differentiate into biliary cell 
phenotypes in NASH, which may involve the participation of HSCs, myofibroblasts, macrophages, and 
natural killer T (NKT) cells[13-15,18,44]. At the molecular level, Notch and Hedgehog pathways may be 
the critical pathways in HPC differentiation into the biliary cell phenotype in NASH patients and mice
[16,19,65] (Figure 1).

HSC and HPC differentiation fate in NASH
HSCs, located in the space of Disse, are the critical cells for liver fibrosis development and progression
[66,67]. HSCs maintain a quiescent phenotype in normal liver but they can be activated by multiple 
factors in NAFLD, such as inflammatory cells, damaged hepatocytes, oxidative stress, etc[66]. Activated 
HSCs can acquire a myofibroblast phenotype and increase ECM production, contributing to NASH 
progression[67].

HSC fibrogenic activation promotes HPC differentiation into hepatocytes to restore mass and 
function[68]. A subfamily of the inhibitor of apoptosis protein family, survivin (also called baculoviral 
inhibitor of apoptosis repeat containing-5), has minimal expression in differentiated cells and is 
associated with cell division. Activated HSCs and HPCs can express survivin. Survivin protein is 
upregulated with increasing fibrogenic activation of HSCs from their quiescent state. Survivin protein 
can suppress the fibrotic response of HSCs. At this point, the regenerative capacity of hepatocytes is 
diminished, followed by replenishment with survivin-expressing HPCs, which differentiate into 
hepatocytes to promote liver regeneration[68].

HSCs also play an essential role in NAFLD-related DR, possibly by inducing HPCs to differentiate 
into CK7+ and/or CK19+ cells[12,17,69,70]. In NAFLD, the emergence of DR is accompanied by a 
significant increase in HSCs and ECM in the DR microenvironment, and the number of HSCs is 
associated with the DR stage and CK7+ HPC expansion[13]. A similar association between HSC and DR 
can also be found in other liver diseases, such as hepatitis C infection and primary biliary cirrhosis[13,
16]. Further studies have partially explained the underlying mechanism of HSC-mediated HPC differen-
tiation[25,69].

Primary studies have shown that HSC-mediated HPC differentiation may involve the Notch and 
Hedgehog pathways. In the DR microenvironment, activated HSCs can upregulate the Notch pathway 
in HPCs by expressing Jagged1 (a Notch pathway ligand)[60,63], leading to the expression of Notch 
pathway target genes such as hes-related family bHLH transcription factor with YRPW motif 1 and 
hairy and enhancer of split homolog-1[63,71,72]. Increased Notch target gene expression can further 
increase the expression of hepatic nuclear factor 1β (HNF1β) and HNF6, consequently contributing to 
HPC differentiation into biliary cells and BD formation[73-75]. Similarly, activated HSCs can upregulate 
the Hedgehog pathway in HPCs by expressing HL (a ligand of the Hedgehog pathway), leading to an 
increase in the Gli transcription factor family (Gli1, Gli2, and Gli3)[76]. Furthermore, Gli2 can translocate 
to the nucleus and promote target gene transcription[77,78], whose activation can promote the prolif-
eration and differentiation of HPCs into CK7+ cells[79-83]. Elevated activity of Notch and Hedgehog 
pathways was analogous to disease severity in studies of both mouse models of NASH and patients 
with NASH[48,79,84], indicating the potential role of Notch and Hedgehog pathways in HSC-mediated 
HPC differentiation (Figure 2).

Macrophages and HPC differentiation fate in NASH
Emerging evidence suggests that macrophages are a heterogeneous population of cells. There are two 
types of macrophages: Resident macrophages, i.e. Kupffer cells, originating from yolk sac-derived 
erythroid, myeloid progenitors in the fetal liver; and infiltrating macrophages originating from bone 
marrow-derived circulating monocytes[7]. In NAFLD, macrophages can be activated and differentiated 
into two types of macrophages: M1 and M2 macrophages[7]. M1 macrophages secrete pro-inflammatory 
cytokines and have high phagocytic activity, whereas M2 macrophages secrete immune-suppressive but 
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Figure 2  Hepatic progenitor cell-mediated hepatic progenitor cell differentiation may involve the Notch and Hedgehog pathways.

pro-fibrogenic cytokines[85,86].
Although it is universally acknowledged that macrophages play a critical role in NAFLD progression, 

the relationship between macrophages and HPC differentiation in NAFLD-related DR remains elusive. 
Macrophages were found to promote HPC differentiation into hepatocytes in the DDC diet mouse 
model, and the Wnt/β-catenin pathway was the key mechanism in this process[69,83,87]. After 
phagocytosis of the hepatocyte debris, macrophages increase the expression and secretion of Wnt3a (a 
ligand of the Wnt/β-catenin pathway), activating the Wnt/β-catenin pathway in HPCs[12,63]. 
Therefore, β-catenin can translocate to the nucleus and bind its co-activators (e.g., CREB-binding 
protein), promoting the expression of target genes such as SOX9, MYC, and Twist-related protein 1, all 
of which are associated with HPC differentiation into hepatocytes[63,88]. Studies have shown that HPCs 
activate during chronic liver injury when hepatocyte proliferation is insufficient to reach homeostasis. 
During transforming growth factor (TGF)-induced apoptosis in a fibrogenic environment, HPC expands 
due to a balance between proliferation and apoptosis, which is favorable in a fibrogenic climate. 
Mitogens that trigger HPC expansion overlap significantly with pro-inflammatory cytokines released by 
hepatic macrophages including tumor necrosis factor, interferon gamma (IFN-γ), interleukin 6 (IL-6), 
and TWEAK. Human amnion epithelial cell-treated NASH mice showed a reduction in both HPC and 
macrophage numbers and expression levels of HPC mitogens and macrophage-released cytokines[89]. 
In NAFLD patients, macrophages increased significantly in the DR area, and macrophage infiltration 
was mainly related to the expansion of CK7+ HPCs and fibrosis stage, indicating the potential role of 
the macrophage in the HPC differentiation fate[13,46]. However, in the context of liver diseases, the role 
of macrophages in determining HPC differentiation fate is still unclear. Deduced from the aforemen-
tioned basic studies, the increased macrophage infiltration in the DR area of NAFLD patients may 
promote the differentiation of HPCs into hepatocytes. Nonetheless, according to pathological findings, 
the actual characteristic of NAFLD-related DR is HPC differentiation into cholangiocytes. Therefore, this 
seemingly contradictory phenomenon might be explained from the following two perspectives.

The regulation of macrophage-mediated HPC differentiation fate may vary across different disease 
contexts, which is one potential explanation. Disease pathogenesis in the DDC diet mouse model is 
highly distinct from NAFLD pathogenesis. Therefore, the functional state of macrophages in NAFLD 
might be correspondingly specific to that in the DDC diet mouse model. Second, the crosstalk between 
macrophages and HSCs in NAFLD may predominantly contribute to the differentiation of HPCs into 
cholangiocytes. It has been well established in NAFLD that macrophages can express multiple pro-
fibrotic factors (such as platelet-derived growth factors subunit B and TGF-β), contributing to the prolif-
eration and activation of HSCs and myofibroblasts[7,66,90-92]. Notably, macrophages were near HSCs 
in the DR area in NAFLD patients, indicating a potential promotive effect of macrophages in driving 
HPC differentiation into cholangiocytes by activating HSCs[13,46].

Conversely, HSCs might hinder macrophage-mediated HPC differentiation into hepatocytes by 
interrupting the interaction between macrophages and HPCs in spatial separation. In a biliary 
regeneration model, HPCs were surrounded by a thick sheath-like layer of myofibroblasts and collagen 
I, which excluded macrophages from forming a close association with HPCs[63]. Similar sheath-like 
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structures might also exist in NAFLD; however, further studies in NAFLD patients are needed to 
validate the potential existence of this structure in the DR area. In summary, macrophages may 
participate in NAFLD-related DR onset and development through crosstalk with cells such as HPCs and 
HSCs. However, its specific role and related mechanisms warrant further investigation (Figure 3).

Mast cells and HPC differentiation fate in NASH
According to recent studies, NAFLD/NASH development is primarily influenced by the interaction 
between DR and mast cells (MCs)[93,94]. MCs may promote NAFLD/NASH progression by activating 
Kupffer cells and HSCs with histamine[94]. Recruitment of MCs is a characteristic of BD injury. It has 
been proven that knocking down or inhibiting the expression of MCs can effectively reduce DR[95,96]. 
MC-derived TGF-β1 is a critical regulator of hepatobiliary damage, and blockage of TGF-β1 can 
ameliorate DR and other features of cholestatic liver injury[97]. MCs were found to promote microve-
sicular steatosis development via the miR-144-3p/aldehyde dehydrogenase 1 family, member A3 
(ALDH1A3) signaling pathway in a Western diet mouse model with NASH[98]. Reduced ALDH1A3 
expression promotes lipid peroxidation associated with liver fibrosis and steatosis and a reduction in β-
oxidation of free fatty acids[99].

Moreover, miR-144-3p showed increased expression in insulin resistance in NASH. Meanwhile, DR 
expansion in mouse models of Western diet with NASH is more sensitive. The phenotypic changes are 
associated with the secretion of insulin-like growth factor 1 by cholangiocytes, driving peribiliary infilt-
ration and MC activation. Consistent with this finding, MCs from NASH patients accumulate in the 
portal area, directly correlating with fibrosis stage[93]. A more relevant study discovered that inhibiting 
MCs reduced DR, inflammation, fibrosis, and recovery from liver injury after MC injection[94].

Previous studies have demonstrated that elevated farnesoid X receptor (FXR) expressed by MCs can 
be detected in primary sclerosing cholangitis, primary biliary cholangitis, and NAFLD[100-102]. MC-
FXR plays a critical role in liver injury and DR in a cholestasis model, where MCs express FXR and 
infiltrate the liver promoting liver fibrosis during cholestasis and triggering biliary injury. After 
migration and activation, MCs induce DR and senescence through paracrine interactions with cholan-
giocytes. Moreover, the MC-FXR signaling pathway modulates the biliary senescence/senescence-
associated secretory phenotype and histamine H1- and H2-receptor signaling pathways to regulate total 
bile acid and then affects DR and liver injury[103]. According to these studies, MCs are corrected with 
DR in various liver diseases and may affect the differentiation of HPCs through macrophages, HSCs, 
and fibroblasts. However, the mechanism by which MCs influence HPC differentiation remains obscure.

ECM and HPC differentiation fate in NASH
ECM – a supporting structure for organs, tissues, and cells-represents a complex protein network 
including fibrillar and non-fibrillar collagen, laminin, fibronectin, etc[104]. ECM proteins can play a vital 
role in HPC differentiation fate. For example, loss of the basement membrane, a cell-supporting 
structure, is correlated with the increased level of HNF4 in HPCs, indicating the differentiation of HPCs 
into hepatocytes[105]. In addition, laminin can upregulate the expression of the biliary marker gene and 
downregulate hepatocyte transcription factor C/EBPa in HPCs, driving HPC differentiation into 
cholangiocytes[106]. A recent study based on mouse models of chronic parenchymal damage showed 
that iloprost reduces laminin deposition and enhances the differentiation of HPCs into hepatocytes
[107]. The disruption of integrin β6, an adhesion receptor that interacts with fibronectin and TGF-β1, 
inhibits the response of HPCs to tissue damage. Significant ECM deposition, such as collagen 
deposition, is commonly found in NAFLD-related fibrosis[67,108]. Therefore, the accumulation of ECM 
during the development of NAFLD may contribute to HPC differentiation and the formation of DR.

Hepatocyte senescence and HPC differentiation fate in NASH
Cellular senescence, a cell cycle arrest response, is mediated by the induction of cyclin-dependent kinase 
inhibitors p21 and p16[109,110]. In NAFLD, hepatocyte senescence involves multiple factors, such as 
oxidative stress and inflammation, and is characterized by increased p21 levels[111,112]. Interestingly, 
hepatocyte senescence, i.e. replicative arrest, may activate HPC proliferation and differentiation. 
Oxidative stress induces hepatocyte senescence with consequent cell cycle arrest and impaired 
regeneration[113]. A recent study demonstrated that oxidative stress can affect HPC differentiation, and 
the redox is regulated by various transcription factors, of which nuclear factor (erythroid-derived 2)-like 
2 (NRF2) plays a crucial role in HPC differentiation, and its activation can inhibit oxidative stress. As 
stemness is maintained in HPCs through constitutive NRF2 activation, it is inhibited when HPCs are 
activated during liver injury, e.g., NASH.

Interestingly, NRF2 inhibition increases the transplantation efficiency of human HPCs[114]. In an 
MDM2-deleted mouse model, server hepatocyte senescence was characterized by a high p21 level and 
resulted in significant HPC proliferation and differentiation into hepatocytes[33]. However, in NAFLD 
patients and the choline-deficient and ethionine-supplemented (CDE) diet mouse model, mild 
hepatocyte senescence was also identified by a lower p21 level and was positively correlated with DR 
stage and CK7+ HPC expansion, conversely indicating a potential role of hepatocyte senescence in HPC 
differentiation into cholangiocytes[14,33]. To reconcile these apparently conflicting findings, some 
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Figure 3  Potential role of macrophages in hepatic progenitor cell differentiation fate in non-alcoholic fatty liver disease.

experts have suggested that the absence of hepatocyte senescence may enable hepatocytes to undergo 
self-regeneration without relying on HPC-mediated regeneration[33]. In addition, hepatocytes are the 
primary source of liver regeneration in a healthy liver, while HPCs do not participate in normal liver 
regeneration. Therefore, it might be further speculated that aging and healthy hepatocytes may regulate 
HPC differentiation. Nevertheless, the mechanism by which aging hepatocytes and/or healthy 
hepatocytes regulate HPC differentiation fate is yet to be elucidated.

NKT cells and HPC differentiation fate in NASH
NKT cells – a type of innate immune cell in the liver – can participate in the development of liver 
inflammation and fibrosis[115]. In NAFLD, NKT cells significantly increase in the DR area, and their 
infiltration extent correlates with both NASH severity and DR stage[80,116]. Conversely, liver biopsies 
of HBV patients often reveal a pronounced DR and diminished expression of IFN-γ, which is caused by 
NKT cells. Nevertheless, treatment with IFN-γ has been shown to ameliorate DR in these patients[117]. 
However, the role of NKT cells in HPC differentiation fate is unclear in NAFLD-related DR. There is 
evidence suggesting a promotive role of NKT cells in HPC differentiation into cholangiocytes in liver 
injury models. In these studies, NKT cells increased the expression of IL-13 and the production of 
Hedgehog ligands, which may drive HPC differentiation into cholangiocytes[80,118-121]. Nevertheless, 
it is unclear whether NKT cells are required for HPC differentiation into biliary cells in NASH.

Potential role of HPC differentiation in aggravating NASH
In addition to the impact of the NASH-related DR microenvironment on HPC differentiation fate, differ-
entiated HPCs can aggravate inflammation and fibrosis progression in NASH. As aforementioned, there 
is a close correlation between HPC expansion and NASH progression, indicating the potential role of 
differentiated HPCs in aggravating NASH. Moreover, the promotive role of differentiated HPCs in 
NASH inflammation and fibrosis progression has been proven in NASH-related animal models. 
Although the underlying mechanism has yet to be fully understood, it may involve the participation of 
HSCs, macrophages, adipokines, and the epithelial-mesenchymal transition (EMT) (Figure 1).

Differentiated HPCs may participate in HSC-mediated NASH-related fibrosis by promoting HSC 
activation and proliferation. Increased hepatic levels of several factors, such as PDGF, connective tissue 
growth factor (CTGF), and Hedgehog ligands, have been found in NAFLD animal models[60,122,123]. 
In basic studies, HPCs are one of the sources of PDGF, CTGF, and Hedgehog ligands[81,122]. The 
promotive role of these molecules in enhancing HSC proliferation, accumulation, and ECM production 
has been well established[81,124-126]. Therefore, these pathways may be involved in HPC-mediated 
HSCs activation in NASH aggravation.

In addition to directly promoting HSC and myofibroblast activation, HPCs may undergo the EMT 
towards myofibroblasts, consequently leading to hepatic fibrosis progression. EMT is a cell 
reprogramming process from the epithelial to mesenchymal phenotype[76,77,127]. EMT in hepatocytes, 
cholangiocytes, and HSCs can be found in various liver diseases and is related to hepatic fibrosis[76,128,
129]. A proportion of HPCs can go through the EMT, which is characterized by the upregulation of 
mesenchymal cell markers [such as alpha-smooth muscle actin (α-SMA) and S100 calcium-binding 
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protein A4) and downregulation of epithelial cell markers (such as CK7 and CK19)[130-133]. Differen-
tiated HPCs (CK7+] that highly express α-SMA can be found in NAFLD, indicating the presence of 
HPC-originated EMT and its potential contribution to fibrosis pathogenesis[79]. The onset of EMT in 
HPCs may involve the Hedgehog pathway activity and TGF-β[79]. Notably, whether high expression of 
a-SMA or collagen in HPCs can be regarded as the EMT remains controversial. This is because a recent 
lineage tracing study, using an α-fetoprotein Cre mouse model, provided strong evidence against the 
existence of HPC-myofibroblast transition[134]. Therefore, further basic studies regarding the 
origination of α-SMA and CK7 double-positive cells are warranted.

Differentiated HPCs can promote macrophage-mediated inflammation in NASH. Studies have shown 
that macrophages play an essential role in NASH aggravation[7]. As previously mentioned, significant 
macrophage infiltration was detected in the NAFLD-related DR area. The number of macrophages is 
significantly associated with the extent of DR and HPC expansion, indicating that HPCs have a potential 
role in macrophage recruitment[13]. Primary studies have proven that multiple factors, such as 
chemokines and pro-inflammatory cytokines, are involved in HPC-mediated macrophage recruitment
[7,135-137]. For example, HPCs can contribute to macrophage recruitment by increasing C-C motif 
chemokine ligand 2 and C-X3-C motif chemokine ligand 1 expression and promote macrophage 
polarization into M1-type by secreting IL-1, IL-6, and IFN-γ, consequently exacerbating hepatic inflam-
mation[7,135-137]. Therefore, these cytokines may participate in HPC-mediated macrophage infiltration 
and activation in NASH.

Metabolic dysregulation is a major hallmark in the pathophysiological process of NAFLD, and differ-
entiated HPCs exacerbate by causing dysregulation of the secretion of adipokines, leading to an increase 
in NASH progression. Adipokines, including adiponectin, leptin, and resistin, contribute to NAFLD 
development by modulating glycolipid metabolism, inflammatory response, and HSC activation[138]. 
Although adipokines are mainly produced by adipose tissues, they have also been found to secrete 
adiponectin and resistin[45,139]. Notably, in NASH, differentiated HPCs increase resistin expression 
and downregulate adiponectin expression. Moreover, resistin expression in HPCs is positively 
correlated with the severity of NAFLD.

By contrast, adiponectin expression in HPCs was found to be negatively correlated with the severity 
of NAFLD, indicating that adipokines play a role in HPC-mediated NASH progression[45]. Adiponectin 
can suppress hepatic lipogenesis and the production of proinflammatory cytokines but can stimulate 
insulin secretion and fatty acid oxidation in the liver[140,141]. By contrast, resistin reduces peripheral 
insulin sensitivity and promotes the expression of proinflammatory cytokines[138,142]. In NASH, 
adipokine dysregulation aggravates insulin resistance, worsening liver inflammation and injury, which 
also increases HSC activation, thereby aggravating NASH[45,143-145]. Therefore, the NAFLD-related 
microenvironment can cause the dysregulation of adipokine expression in HPCs, leading to NAFLD-
related metabolic dysregulation.

CONCLUSION
Studies conducted in the past 100 years have shown that DR may be a compensatory reaction to liver 
injury, but the correlation between DR and NAFLD needs to be sufficiently studied. The expected 
prevalence of DR in NAFLD patients, and more importantly, the close relationship between DR and the 
progression of inflammation and fibrosis in NASH, remain to be clarified. Although DR promotes liver 
regeneration[54,146], it remodels the NASH microenvironment, which aggravates rather than alleviates 
NASH severity, similar to the initially upright “Macbeth” getting perverted under a corruptive lure. In 
NAFLD, HPC proliferation and differentiation, the core processes in DR pathogenesis, might be 
triggered by NAFLD-related liver injury. The cells (such as HSCs and macrophages) and their secreted 
substances may drive the differentiation of HPCs into cholangiocytes. Conversely, differentiated HPCs 
may, in turn, aggravate NASH through multiple pathways, which may involve the participation of 
HSCs, macrophages, adipokines, and the EMT. The involvement of these cells in the interaction between 
DR and NASH pathogenesis may form a ‘vicious circle,’ presumably leading to further progression of 
hepatic inflammation and fibrosis.

However, the bilateral interaction between DR and NAFLD remains to be further verified. For the DR 
caused by NAFLD, the majority of previous findings about NAFLD-related DR were primarily obtained 
through observational studies. Several signaling pathways are involved in DR (e.g., Notch, Hedgehog, 
TWEAK), and it was recently discovered that long non-coding RNA/p300 could influence DR 
progression[147]. However, how these pathways promote the pathogenesis of DR in the context of 
NAFLD remains unclear. We are still determining whether the pathways mentioned above are involved 
in DR-related NAFLD. The key factors driving HPC differentiation in NAFLD need to be further invest-
igated. In addition, in terms of the impact of DR on the pathogenesis of NAFLD, considering our limited 
understanding of the core molecular mechanism driving DR, it is difficult to provide a direct and exact 
intervention towards the DR onset, which hinders establishment of a causal effect of DR on NAFLD 
progression. Therefore, we need further investigations to deepen our understanding of the core and 
characteristic pathways of DR, to achieve the development of DR-targeted intervention in NAFLD-
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related studies. More importantly, the underlying mechanisms of both NAFLD-caused DR and HPC-
mediated NAFLD progression may be important targets for treating NAFLD.
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