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Abstract
The tumor microenvironment is a complex network of cells, extracellular matrix, 
and signaling molecules that plays a critical role in tumor progression and 
metastasis. Lymphatic and blood vessels are major routes for solid tumor meta-
stasis and essential parts of tumor drainage conduits. However, recent studies 
have shown that lymphatic endothelial cells (LECs) and blood endothelial cells 
(BECs) also play multifaceted roles in the tumor microenvironment beyond their 
structural functions, particularly in hepatocellular carcinoma (HCC). This compre-
hensive review summarizes the diverse roles played by LECs and BECs in HCC, 
including their involvement in angiogenesis, immune modulation, lymphan-
giogenesis, and metastasis. By providing a detailed account of the complex 
interplay between LECs, BECs, and tumor cells, this review aims to shed light on 
future research directions regarding the immune regulatory function of LECs and 
potential therapeutic targets for HCC.
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Core Tip: Lymphatic and blood endothelial cells are important components of stromal cells in the tumor microenvironment. 
Besides their essential function in the formation of tumor draining blood and lymphatic vessels, they can activate various 
signaling pathways to promote tumor development and metastasis. This review discusses lymphangiogenesis and 
angiogenesis, and summarizes the current knowledge on common markers of lymphatic and blood endothelial cells and their 
roles in tumor metastasis, particularly in hepatocellular carcinoma. Based on the available evidence, researchers are 
attempting to discover new targeted therapies for the prevention of tumor progression.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is a prevalent form of cancer worldwide, particularly in Asia where the majority of cases 
are reported. According to the World Cancer Report released in GLOBOCAN 2020, there were an estimated 905677 new 
cases of HCC globally, with 72.5% of those occurring in Asia[1]. Liver cancer accounts for a significant proportion (8.3%) 
of cancer-related deaths[2]. Metastasis, the spread of cancer cells to other parts of the body, is the primary cause of 
mortality in patients with solid tumors. While surgical resection and liver transplantation are common treatment options 
for HCC, several other approaches (e.g., transhepatic arterial chemoembolization, microwave ablation, targeted drugs, 
and immunotherapy) are also employed. However, the emergence of resistance to drugs, such as sorafenib and lenvatinib
[3], has prompted an investigation into alternative treatment strategies. Lymphatic and blood vessels are the primary 
routes for metastasis. Healthy tissues and solid tumors consist of two distinct regions, namely the parenchyma and the 
stromal region[4]. The term tumor microenvironment (TME) refers to the area where tumor cells reside, including the 
stromal region. It is a complex milieu comprising non-malignant cells, such as lymphatic endothelial cells (LECs), blood 
endothelial cells (BECs; also termed vascular endothelial cells), mesenchymal cells, pericytes, immune cells, as well as the 
extracellular matrix (ECM) and inflammatory mediators they secrete.

Pan-cancer analysis has revealed that the regulation of the TME significantly impacts tumor invasion. Studies have 
extensively investigated the effects of immune cells and inflammatory mediators secreted by stromal cells on the TME. 
For example, it has been demonstrated that CD8+ T cells and natural killer T cells cooperatively promote liver damage 
and carcinogenesis through interaction with hepatocytes in a non-alcoholic steatohepatitis-mouse model[5]. In addition, 
in human glioblastoma multiforme, macrophage-associated phosphoglycerate kinase 1 (PGK1) phosphorylation 
promotes aerobic glycolysis and tumorigenesis. CD8+ cytotoxic T cells kill tumor cells by granule exocytosis and Fas 
ligand-mediated (FasL-mediated) apoptosis. They induce cytotoxicity by secreting interferon-γ (IFN-γ) and tumor 
necrosis factor α (TNFα). Research using mouse melanoma models has shown that promoting fatty acid catabolism 
improves the ability of CD8+ tumor-infiltrating lymphocytes to delay tumor progression. In lung adenocarcinoma, 
hypoxia upregulates C-C motif chemokine ligand 28 (CCL28) to recruit regulatory T (Treg) cells, which are involved in 
the immune escape of tumor cells. However, Treg cells suppress effector T cells, including cytotoxic T cells[6-10]. 
Mesenchymal stem cells secrete hepatocyte growth factor (HGF), indoleamine 2,3-dioxygenase (IDO), nitric oxide (NO), 
prostaglandin E2 (PGE2), and transforming growth factor β (TGFβ), which inhibit cytotoxic activity and differentiation of 
T helper 1 cells. Interleukin-10 (IL-10) and PGE2 secreted by mesenchymal stem cells in the TME impair dendritic cell 
maturation, thereby reducing T cell activation[4]. In HCC, the action of IL-4, IL-13, and IL-10, and activation of toll-like 
receptors diminish antigen-presenting activity[11]. TGFβ and thymic stromal lymphopoietin (TSLP) inhibit T cells and 
promote T cell skewing towards a T helper 2 phenotype, respectively. Cancer-associated fibroblasts (CAFs) also secrete 
inflammatory cytokines, including CXC-chemokine ligand 8 (CXCL8), IL-4, and IL-6, further suppressing T cell activity. 
Of note, several chemokines secreted by CAFs in the TME inhibit immune cells: CXCL12 repels T cells; CXCL13 recruits B 
cells; and CCL2, CCL3, CCL4, and CCL5 recruit myeloid cells, including macrophages and myeloid-derived suppressor 
cells, and ECM[12]. ECM secreted by stromal cells in the TME also significantly influences anti-tumor immune responses. 
The role of LECs and BECs (representative stromal cells in the TME) in inhibiting tumor-associated lymphangiogenesis 
and neoangiogenesis has not been fully elucidated. In HCC, colorectal carcinoma, and breast invasive carcinoma, it has 
been shown that immune invasion is highly correlated with the expression of LECs and BECs. Previous studies have 
revealed associations between the presence of LECs and BECs in the TME and immune invasion in colorectal and breast 
cancer[13]. However, research studies on the role of LECs and BECs in HCC remain limited. Previous investigations have 
demonstrated interactions between LECs, BECs, and liver injuries. Chronic inflammation in the liver can induce the 
proliferation of LECs by promoting the production of chemoattractant cytokines. An increased number of LECs has been 
positively correlated with disease severity. The quantity of LECs is increasing during idiopathic portal hypertension, 
hepatitis C virus-associated cirrhosis, and primary biliary cirrhosis. Seemingly, changes in LECs reflect the type of 
peripheral inflammation[14]. The levels of bacterial products, such as lipopolysaccharide (LPS), are increased in cirrhosis; 
these products activate nuclear factor-κB (NF-κB) in LECs. Consequently, they upregulate the expression of prospero 
homeobox 1 (PROX1) and vascular endothelial growth factor receptor 3 (VEGFR-3). TGFβ1 is released in the TME of HCC 
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to increase the expression of CD105 in BECs, thus enhancing the invasion and metastasis of liver cancer cells by inducing 
neoangiogenesis. This comprehensive review aims to provide valuable insights into the characteristics, effects, and 
intricate interactions of LECs and BECs in the TME. The article specifically focuses on their roles in tumor development, 
metastasis, and potential therapeutic interventions in HCC.

The levels of bacterial products, such as lipopolysaccharide (LPS), are increased in cirrhosis; these products activate 
NF-κB in LECs. Consequently, they upregulate the expression of prospero homeobox 1 (PROX1) and vascular endothelial 
growth factor receptor 3 (VEGFR-3). TGFβ1 is released in the TME of HCC to increase the expression of CD105 in BECs, 
thus enhancing the invasion and metastasis of liver cancer cells by inducing neoangiogenesis. This comprehensive review 
aims to provide valuable insights into the characteristics, effects, and intricate interactions of LECs and BECs in the TME. 
The article specifically focuses on their roles in tumor development, metastasis, and potential therapeutic interventions in 
HCC.

TUMOR LYMPHANGIOGENESIS AND ANGIOGENESIS
Lymphangiogenesis
Lymphangiogenesis refers to the formation of new lymphatic vessels, and is closely associated with tumor metastasis[15,
16]. In the TME, various lymphangiogenic growth factors contribute to the proliferation and morphological changes of 
LECs, thereby facilitating lymphangiogenesis (Figure 1).

Vascular endothelial growth factor-C: Vascular endothelial growth factor-C (VEGF-C) is one of the most potent 
stimulating factors for LEC growth. Studies have shown that VEGF-C is correlated with lymphangiogenesis, lymph node 
metastasis, and worse prognosis in patients with tumors. In murine models of human cancer, experiments involving 
supplementation with or blocking of VEGF-C have demonstrated its great importance[17,18]. VEGF-C binds to the 
receptor tyrosine kinase VEGFR-3, along with the less potent ligand VEGF-D[19,20]. This binding induces a series of 
downstream signaling events, including the activation of protein kinase C-dependent (PKC-dependent) pathways such as 
p42/p44 mitogen-activated protein kinase (MAPK) and AKT phosphorylation[19]. These signaling pathways promote the 
survival, growth, and migratory ability of LECs. Blocking VEGFR-3 effectively inhibits VEGF-C-induced lymphan-
giogenesis and tumor progression, thereby highlighting the central role of the VEGF-C/D-VEGFR-3 axis in LEC growth
[21].

Neuropilin 2: Neuropilin 2 is another lymphangiogenic growth factor, a type 1 transmembrane glycoprotein highly 
expressed by LECs. It forms a complex with VEGFR-3 upon binding with VEGF-C/D, leading to the activation of 
VEGFR-3 and subsequent enhancement of lymphangiogenesis[22-24].

Fibroblast growth factor: Fibroblast growth factor receptor-3 (FGFR-3) has been identified as a novel PROX1 target gene. 
PROX1 induces the expression of the IIIc isoform, which is also the major isoform of FGFR-3 expressed in LECs. FGF-1 
and FGF-2 promote the proliferation, migration, and survival of cultured LECs without involvement of blood endothelial 
cell growth factor receptor-3[25-27]. In mouse corneal tissue which lacks vascular and lymphatic vessels, FGF-2 directly 
acts on LECs to promote proliferation and migration via activation of the FGFR-1–mediated signaling pathway[26].

Sphingosine-1-phosphate: Sphingosine-1-phosphate (S1P) acts as a lymphangiogenic mediator in LECs. It induces 
migration, sprouting, capillary-like tube formation, and intracellular calcium mobilization in cultured human LECs in 
vitro and in a Matrigel plug assay in vivo[28]. In a murine model of breast cancer metastasis[29], S1P, suppressed by SK1-I, 
the specific sphingosine kinase 1 (a critical role in producing S1P and mediating tumor-induced lymphangiogenesis) 
inhibitor, reduced metastases to lymph nodes and lungs, and decreased overall tumor burden.

HGF: HGF plays a dual role in lymphangiogenesis. On one hand, HGF overexpression in transgenic mice or its 
intradermal delivery induces lymphatic vessel hyperplasia, indicating its direct involvement in lymphangiogenesis. On 
the other hand, experiments using prostate and breast tumor mouse models revealed that HGF can also promote the 
expression of VEGF-C/D, indirectly contributing to lymphangiogenesis[30,31]. Moreover, in oral squamous cell 
carcinoma, HGF significantly enhanced the proliferation, migration, invasion and tube formation of LECs; this process 
could be inhibited by downregulating the expression of c-Met, the receptor of HGF[32].

Platelet-derived growth factor: The platelet-derived growth factor (PDGF) family induces lymphatic vessel expansion 
independently of the VEGF-C/D/VEGFR-3 pathway. PDGF-BB, a member of this family, acts as a direct lymphan-
giogenic factor. Overexpression of PDGF-BB in a syngeneic fibrosarcoma tumor mouse model promoted tumor lymphan-
giogenesis and lymphatic metastasis, which could be reduced by blocking PDGF receptors (PDGFR). In vitro, PDGF-BB 
stimulated MAPK activity and the motility of isolated LECs[33].

Angiopoietins: Angiopoietins (ANGPTs) (Ang1, Ang2, and Ang3/Ang4) and their receptors Tie1 and Tie2 are involved 
in blood vessel maturation and patterning. However, they also play a role in lymphangiogenesis. Overexpression of 
ANGPTs promotes lymphangiogenesis in adult tissue in vivo, as observed in experimental pancreatic cancer models[34,
35]. Holopainen et al[36] demonstrated that Ang2 blockade attenuated tumor lymphangiogenesis, dissemination of tumor 
cells via the lymphatic vessels, lung metastasis, and colonization of the lungs by tumor cells.

Adrenomedullin: High levels of adrenomedullin (AM) have been reported in several types of tumors in humans[37,38]. 
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Figure 1 Common lymphangiogenesis-mediating receptors. Vascular endothelial growth factor receptor C (VEGF-C), fibroblast growth factors, 
hepatocyte growth factor (HGF), angiopoietins, adrenomedullin promote the survival, growth, and migratory ability of lymphatic endothelial cells (LECs); Neuropilin 2 
forms a complex with VEGFR-3 upon binding with VEGF-C/D, enhancing lymphangiogenesis; Sphingosine-1-phosphate induces migration, sprouting, capillary-like 
tube formation of LECs; HGF, platelet-derived growth factor are directly involved in lymphangiogenesis. HGF indirectly promotes VEGF-C/D expression, contributing 
to lymphangiogenesis. LEC: Lymphatic endothelial cell; VEGF: Vascular endothelial growth factor receptor; HGF: Hepatocyte growth factor; S1P: Sphingosine-1-
phosphate; AM: Adrenomedullin; FGFs: Fibroblast growth factors; PDGF: Platelet-derived growth factor.

In a mouse model of lung carcinoma, AM overexpression has been correlated with increased tumor- and lymph node-
associated lymphangiogenesis, as well as distant organ metastasis[39]. Berenguer-Daizé et al[40] and Fritz-Six et al[41] and 
found that histologic examination of anti-AM antibody-treated tumors showed evidence of disruption of tumor 
vascularity, with depletion of vascular, LECs, and pericytes, and increased LEC apoptosis. Another important finding 
was that anti-AM antibody potently blocks tumor-associated lymphangiogenesis, but does not affect established 
vasculature and lymphatic vessels in normal adult mice.

Angiogenesis
In 1971, Folkman[42] hypothesized that angiogenesis is essential for the development and growth of solid tumors beyond 
a size of 2-3 mm3. Subsequent evidence supported the notion that solid tumors rely on angiogenesis for sustained growth
[43]. Angiogenesis involves the formation of new blood vessels from existing vasculature in disease. This process differs 
from vasculogenesis, the de novo formation of new blood vessels from endothelial progenitors[44]. Numerous studies 
have shown that metabolic stress, such as hypoxia, low pH, or hypoglycemia, as well as the immune and inflammatory 
response, can stimulate tumor angiogenesis[44,45].

Among these factors, hypoxia is a primary driver of tumor angiogenesis, leading to increased expression of VEGF and 
other angiogenesis stimulators from hypoxic cells[46]. Hypoxic tumor cells can activate the angiogenesis pathway by 
regulating pro-angiogenic genes through the hypoxia-inducible factor (HIF) pathway. Hypoxia occurs when there is 
insufficient oxygen reaching the tissue, often resulting from a mismatch between the demand for tumor growth and the 
supply of oxygen and nutrients[47,48]. Distinguished from angiogenesis under normal physiological conditions, tumor 
blood vessels exhibit immaturity and impaired functionality, including excessive permeability, poor perfusion, and 
increased hypoxia[49]. These effects are attributed to the secretion of abnormal levels of growth factors by tumor and 
stromal cells, among which VEGF plays a key role.

Markers of LECs and BECs
LECs and BECs exhibit specificity and sensitivity in expressing positive markers, while maintaining resistance to 
biological and chemical agents during histological processing. We did not search for markers that meet the above criteria; 
in actual practice, we often labeled specific cells with two or more markers. Common markers have been listed in Table 1.

PROX1: The transcription factor PROX1 is regarded as a constitutive marker of LECs due to its pivotal role in lymphan-
giogenesis[50,51]. It is consistently located in the nuclei of all LECs, regardless of their physiological or pathological state
[52]. Recent studies showed that PROX1 could inhibit the proliferation of HCC cells, and reduced PROX1 expression was 
associated with poor prognosis of HCC[53]. Research has demonstrated that PROX1 can enhance tumor lymphan-
giogenesis in both breast cancer and melanoma[54,55]. This finding highlights the significance of PROX1 in promoting the 
formation of new lymphatic vessels within tumors, thereby facilitating the spread of cancer cells through the lymphatic 
system. In glioblastoma, overexpression of PROX1 enhanced the growth and proliferation of primary and implant focal 
tumor cells, and this invasive growth potential is regulated by activation of the NF-κB signaling pathway[56].
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Table 1 Common Markers of Lymphatic endothelial cells and Blood endothelial cells

Marker Definition Expressed on 
cells Addition Types of cancer Ref.

PROX-1 An evolutionarily conserved class of 
atypical homeodomain proteins

LECs Located in the nucleus and 
promoting lymphangiogenesis

Breast cancer; Melanoma; Glioblastoma [50-56]

PDPN A transmembrane mucin type O-
glycoprotein

LECs Functioning in the downstream 
of PROX-1

Angiosarcomas;Melanoma; Colorectal 
carcinoma; Breast cancer; Osteosarcoma

[57-60]

LYVE-1 One of the hyaluronan-binding 
glyco-protein receptors

LECs Acting with VEGFR and PDGFR 
in the LECs

Oral oncogenesis; Lung cancer [62-66]

VEGFR-3 An receptor tyrosine kinase LECs/BECs Functioning by activating 
RAS/RAF-1/MEK/ERK 
signaling pathway

Gastric cancer; Intrahepatic cholangiocar-
cinoma; Colorectal carcinoma

[67,68]

CD31 One of the immunoglobulin 
superfamily

LECs/BECs Promoting tumor angiogenesis 
by regulating TME indirectly

Breast cancer; Melanoma; Gastric cancer [71,73-
75]

CD105 Homodimeric transmembrane 
glycoprotein, a coreceptor for 
ligands of the TGF-β family

BECs Also called Endoglin Esophageal squamous cell carcinoma; 
Colorectal carcinoma

[76-79]

BECs: Blood endothelial cells; LECs: Lymphatic endothelial cells; LYVE-1: Lymphatic vessel endothelial hyaluronan receptor 1; PDGFR: Platelet-derived 
growth factor receptor; PDPN: Podoplanin; PROX-1: Prospero homeobox 1; VEGFR: Vascular endothelial growth factor receptor; TME: Tumor micro-
environment.

Podoplanin: The transmembrane glycoprotein podoplanin (PDPN) was initially identified on podocytes; it is also 
expressed on LECs, but not on BECs[57]. The anti-D2-40 antibody is a commonly used commercial antibody that 
specifically targets a fixation-resistant epitope of PDPN[58]. This antibody is widely utilized to detect and study PDPN 
expression in various research and diagnostic applications. Notably, both PROX1 and PDPN are mucin-type 
transmembrane proteins expressed in LECs. It has been hypothesized that PDPN functions downstream of PROX1[59]. 
Furthermore, it appears that PDPN expression is regulated by PROX1 in LECs at the transcriptional level[60]. Hence, both 
PROX1 and PDPN are excellent markers for the identification of LECs[58-61].

Lymphatic vessel endothelial hyaluronan receptor 1: The integral membrane glycoprotein lymphatic vessel endothelial 
hyaluronan receptor 1 (LYVE-1) acts as a homologue of the CD44 hyaluronan receptor. Although it is not a signaling 
receptor, it is involved in cell interactions. It has been shown that the expression of LYVE-1 in tumors promotes lymphan-
giogenesis and facilitates the transfer of tumor cells to lymph nodes[62]. Studies have suggested that LYVE-1 induces 
signals indirectly through the tyrosine kinase Src and crosstalk with growth factor receptor tyrosine kinase-linked 
receptors. Furthermore, co-immune precipitation studies have indicated that LYVE-1 physically associates with VEGFR 
and PDGFR in the LEC plasma membrane[61]. While LYVE-1 is predominantly expressed in mature LECs, it is absent in 
some LECs; notably, it is also expressed in certain BECs. Consequently, the use of LYVE-1 alone as a marker for LECs can 
be challenging[63-66].

VEGFR-3: The receptor tyrosine kinase VEGFR-3, also termed fms-related receptor tyrosine kinase 4 (FLT4), plays a 
crucial role in both tumor angiogenesis and lymphangiogenesis. Binding of VEGF-C/D to VEGFR-3 triggers dimerization 
and transphosphorylation of the receptor, thereby activating the RAS/RAF-1/MEK/ERK signaling pathway and 
ultimately promoting lymphangiogenesis[67,68]. Sorafenib[69] and lenvatinib[70], which are widely used VEGFR-3 
inhibitors, have demonstrated effectiveness as monotherapies. Recently, Paillasse et al[68] investigated EVT801, a novel 
selective VEGFR-3 inhibitor that specifically targets VEGFR-3-positive tumors and tumors with a VEGFR-3-positive TME. 
The results showed that EVT801 was effective in these settings without causing side effects, such as hypertension. The 
efficacy of EVT801 was correlated with the expression levels of VEGFR-3. HCC is primarily driven by angiogenesis, 
which is influenced by both tumor cells and the microenvironment. As a result, anti-vascular therapies have become 
increasingly popular for the treatment of HCC. For example, sorafenib is a VEGFR inhibitor that blocks the VEGF 
pathway to inhibit tumor angiogenesis. However, the effectiveness of sorafenib is limited; thus, this agent can only be 
used to treat advanced HCC. Therefore, it is likely that other unknown angiogenic mechanisms are involved in this 
process.

CD31: CD31, commonly termed platelet and endothelial cell adhesion molecule 1 (PECAM-1), is a widely used pan 
marker for endothelial cells. It has been utilized in various studies to isolate BECs[71]. CD31 belongs to the immuno-
globulin (Ig) superfamily and is expressed on platelets, leukocytes, and endothelial cells. It is highly expressed at 
intercellular junctions on endothelial cells[72]. DeLisser et al[73] found that CD31 acts as a mediator of the late 
progression of metastatic tumors, driving advanced metastatic progression. Their experiments suggested that CD31-null 
mice had reduced tumor cell proliferation in non-vascularized, pre-angiogenic lesions[74]. These results indicated that 
CD31 may function as a modulator of the TME, rather than through direct stimulation of angiogenesis. However, CD31 is 
not a specific marker for BECs in the TME, as it is also expressed on the surface of normal cells, such as hematopoietic and 
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immune cells (e.g., platelets, neutrophils, monocytes, megakaryocytes, natural killer cells, and some T cells)[75]. 
Therefore, researchers have identified other markers to more precisely distinguish BECs.

CD105: The transmembrane glycoprotein CD105, alternatively referred to as endoglin (ENG), is expressed on the surface 
of endothelial cells. It is a component of the TGFβ receptor complex. CD105 is involved in modulating TGFβ signaling to 
promote endothelial cell proliferation[76]. Sakurai et al[77] reported that CD105 is related to malignant tumor properties 
and prognosis in esophageal squamous cell carcinoma, and may be useful as a marker of angiogenesis. Additionally, 
increased CD105 expression has been observed in aggressive and metastatic colorectal cancer[78,79].

ROLE OF LYMPHANGIOGENESIS AND ANGIOGENESIS IN CANCER PROGRESSION
Role of lymphangiogenesis and angiogenesis in tumor metastasis
An increase in the number and density of LECs in and around tumor masses creates more opportunities for contact 
between these cells and tumor cells. Lymphatic vessels provide a relatively comfortable environment for tumor cells 
within the tumor mass, offering better survival conditions compared with the bloodstream due to lower hydrodynamic 
stress. This aids in their survival during lymphatic metastasis[80]. Moreover, an increased number of functional 
lymphatic vessels can lead to better drainage of lymphatic fluid and lower interstitial pressure. This, in turn, can result in 
increased blood perfusion and nutrient supply to tumor cells, promoting their growth and proliferation[21]. Migration of 
tumor cells along LECs and lymphatic vessels is a crucial step in lymphatic metastasis. LECs facilitate this process by 
secreting chemokines that attract tumor cells expressing the corresponding receptors, such as C-C motif chemokine 
receptor 7 (CCR7) and C-X-C motif chemokine receptor 4 (CXCR4)[81]. The chemokine gradient towards tumor-draining 
lymph nodes is generated by the flow of interstitial fluid, ensuring the unidirectional migration of tumor cells along 
lymphatic vessels and into tumor-draining lymph nodes[82]. Notably, LECs may utilize distinct mechanisms (Figure 2) to 
attract tumor cells along collecting lymphatic vessels or into the sinus system of the lymph node[83].

CCL1/CCR8 axis: The CCL1/CCR8 axis plays a pivotal role in metastasis to lymph nodes. Proinflammatory mediators, 
including TNF, IL-1β, and LPS, increase the production of CCL1 by LECs and enhance the migration of tumor cells 
towards LECs. CCR8, the receptor for CCL1, is highly expressed in human malignant melanomas. Blocking CCR8 or 
CCL1 can inhibit the migration of tumor cells towards LECs. Additionally, this axis is involved in recruiting Treg cells 
into the tumor niche and converting CD4+ T cells into Treg cells[83,84].

CXCL12/CXCR4 or CXCR7 axis: CXCL12 is a key regulator of tumor progression with two receptors, namely CXCR4 and 
CXCR7. Overexpression of CXCL12 is associated with increased risk and poor prognosis in several common types of 
cancer, including HCC, colorectal carcinoma, and breast invasive carcinoma. Chronic hypoxia-induced increase in CXCR4 
expression stimulates cancer cell proliferation and leads to the migration of LECs into lymphatic vessels, thus facilitating 
the invasion of cancer cells into adjacent tissues and organs. Epithelial–mesenchymal transition (EMT) is considered an 
important process in tumor metastasis. In CRC, LPS (normally produced by the microbiota) use NF-κB signaling, which 
can suppress apoptotic signaling, to induce CXCR4 expression in tumor cells. This process promotes EMT and metastasis. 
VEGF enhances the effect of CXCL12 on LECs by increasing CXCR4 expression on endothelial cells[85-91].

CCL21/CCR7 axis: CCL21 is mainly produced by LECs and interacts with CCR7 on immune cells, such as dendritic and T 
cells, playing a crucial role in their migration to lymph nodes. Tumor cells expressing CCR7 can also utilize this 
mechanism to enter lymphatic vessels for lymphatic metastasis. The CCL21/CCR7 axis induces EMT in tumor cells, 
upregulates the expression of matrix metalloproteinases (MMPs) by activating the ERK1/2 pathway, and promotes 
cancer cell proliferation. It can also promote LEC proliferation by activating the AKT pathway and the AKT/ERK1/2 
pathway in tumor cells. Tumor cells expressing CCR7 can sense the gradient of CCL21 concentrations in lymphatic 
vessels, and migrate from low to high concentrations into those vessels[82,92].

The Ang/Tie axis is involved in regulating vascular development, vascular homeostasis, pathological inflammation, 
and angiogenic responses[93,94]. In addition to the above mentioned abnormal growth factors, the Ang/Tie axis also 
plays an important role in tumor angiogenesis. Tie is the receptor for Ang, including Tie1 and Tie2. Tie1 is an orphan 
receptor that does not bind to Ang; in contrast, Tie2 is expressed in BECs, pericytes, monocytes, and macrophages, and 
binds to members of the Ang family. The Ang family mainly includes Ang1, Ang2, Ang3, and Ang4. Although Ang1 and 
Ang2 bind to Tie2 with similar affinity, they exert different regulatory effects on BECs. Ang3 and Ang4 have been rarely 
studied thus far; hence, data on their characteristics and functions are inconclusive. Ang1, expressed in pericytes and 
smooth muscle cells, binds to Tie2 in a paracrine manner and phosphorylates Tie2 to maintain vascular stability and 
survival of BECs. Ang2 is expressed only in BECs; it acts on BECs in an autocrine manner, and is a partial competitive 
antagonist of Ang1 for Tie2. Qian et al[95] found that, by blocking the phosphorylation of Tie2, Ang1 affects downstream 
phosphatidylinositol-3-kinase (PI3K) and the growth factor receptor bound protein 2 (GRB2) signaling pathway. These 
effects inhibit the proliferation and migration of BECs, and result in an incomplete tumor vascular basement membrane 
and intercellular space. Consequently, circulating tumor cells pass through leaky tumor blood vessels and tumor external 
lumen, thereby facilitating tumor metastasis.

Role of LECs and BECs in tumor metastasis
The process of tumor cell dissemination through either blood or lymphatic vessels is complex. Moreover, the pathways 
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Figure 2 Cell signaling pathways of CXCL12/CXCR4, CCL21/CCR7, CCL1/CCR8 axis in tumor cells. Proinflammatory mediators increase the 
production of CCL1 by lymphatic endothelial cells (LECs) and enhance the migration of tumor cells towards LECs. CCL1/CCR8 Axis is involved in recruiting Treg 
cells into the tumor microenvironment and converting CD4+ T cells into Treg cells. CXCR4 expression caused by products of the microbiota and chronic hypoxia 
stimulates tumor proliferation and migration of LECs into lymphatic vessels. Vascular endothelial growth factor receptor can enhances the effect of CXCL12/CXCR4 
Axis. The CCL21/CCR7 axis induces epithelial-mesenchymal transition and promotes proliferation of tumor cells, LECs and extracellular matrix. Akt: Serine/threonine 
kinase; AP-1: Activated protein 1; Bcl-2: Anti-apoptotic gene; ECM: Extracellular matrix; EMT: Epithelial-mesenchymal transition; ERK: Extracellular signal-regulated 
kinase; HIF-1: Hypoxia-inducible factor 1; ICAM-1: Intercellular adhesion molecule 1; IL-1L: Interleukin 1L; IL-6: Interleukin 6; JAK/STAT: Janus kinase/signal 
transducer and activator of transcription; JNK: Jun N-terminal kinase; LPS: Lipopolysaccharide; MAPK: Mitogen-activated protein kinase; MMP: Matrix 
metalloproteinase; NF-κB: Nuclear factor kappa B; PI3K: Phosphatidylinositol-3-kinase; TNF: Tumor necrosis factor; VEGF: Vascular endothelial growth factor 
receptor.

preferred by tumor cells remain partly understood. Several factors can influence this preference, including characteristics 
specific to the tumor cells themselves, the TME, and the newly formed vasculature[96]. In terms of the TME, factors that 
attract tumor cells into blood vessels or lymphatic vessels should be considered. These factors include inflammation, host 
hematopoietic precursors, and soluble factors (e.g., chemokines, growth factors, and soluble receptors). Studies have 
shown that gene expression profiles can differentiate between LECs and BECs, highlighting their distinct physiological 
functions and potential as metastatic pathways for tumor cells[97]. Besides their direct association with the development 
of cancer, BECs are one of the sources of CAFs[98]. The heterogeneous group of CAFs is the main inducer of migration 
and invasion of cancer cells. Nutrition and oxygen are provided to HCC by discontinuous BECs, thereby contributing to 
its growth and development. BECs are also involved in intravasation, allowing HCC cells to translocate into the blood 
vessel lumen[99].

Additionally, the specific coreceptors expressed by tumor cells play a role in determining whether they migrate 
through LECs or BECs, as these cells express different receptors and signaling molecules. Furthermore, the choice 
between lymphangiogenesis and angiogenesis may depend on the balance of different inducers in the local TME[100]. 
The selection of a specific route for dissemination may also depend on various factors, such as the structural and 
mechanical properties of blood vessels, the expression of adhesion molecules, the secretion of chemokines, and the 
activity of specific signaling pathways.

SPECIAL FOCUS ON LECS AND BECS IN THE TME OF HCC
The role of LECs and BECs in HCC has also been gradually explored. Preliminary results have implied a correlation 
between lymphangiogenesis and cancer prognosis. Apart from its well-established functions (i.e., processing of gut-
derived nutrients, clearance of toxins, and bile production), the liver is also considered a lymphoid organ. For example, 
hepatic stellate cells and liver sinusoidal endothelial cells exhibit antigen-presenting and immunomodulatory functions to 
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create a tolerant microenvironment. Therefore, LECs in the TME of HCC participate in the nearby arising immune 
responses[14,101].

Chronic inflammation in the liver can induce the production of chemoattractant cytokines and activate NF-κB in LECs, 
leading to upregulation of PROX1 and VEGFR-3 expression[102]. This, in turn, increases the sensitivity to VEGF-C/D, 
thus influencing lymphangiogenesis. It has been confirmed that high expression of VEGF-C in patients with HCC is 
associated with poor prognosis[103]. Lymphatic vessel endothelial hyaluronan receptor 1 (Lyve-1+) cells have been 
identified in the tumor-surrounding environment of human HCC samples. Liver tumors expressing VEGF-C/D are more 
likely to spread within the liver, resulting in poorer outcomes and reduced patient survival[104,105].

HCC is a solid tumor with a high degree of capillarization and arterialization[106,107]. Thus, angiogenesis also plays a 
critical role in its development and metastasis. HCC-released TGFβ1 promotes the expression of CD105 in BECs, acting as 
a promoter of tumor angiogenesis[108]. CD105, in turn, enhances the invasion and metastasis of liver cancer cells by 
increasing VEGF expression and inducing neoangiogenesis[109]. Researchers are actively searching for additional anti-
angiogenic targets. For instance, the sphingosine-1-phosphate receptor 1 (S1PR1), which binds to bioactive molecule S1P 
involved in angiogenesis, may serve as an important target for suppressing angiogenesis in HCC. Inhibiting S1PR1 shows 
promise as an approach to anti-tumor therapy against HCC[110,111].

CONCLUSION
In this manuscript, we chiefly discussed the current knowledge regarding tumor lymphangiogenesis and angiogenesis. In 
addition, we summarized the markers of LECs and BECs, as well as their roles in tumor metastasis (especially in HCC).

LECs can play a significant role in the TME by producing growth factors to sustain tumor cells or present tumor 
antigens to the immune cells. Nevertheless, there is a need to reveal the cellular and molecular mechanisms involved in 
these processes. Furthermore, several distinct subpopulations of LECs have been identified, which may fulfill diverse 
types of functions. Further studies are required to investigate whether subpopulations of LECs could be involved in 
different aspects of anti-tumor immunity and related to the sequential steps of tumor metastasis. Further investigation is 
warranted to examine the possibility of preventing tumor progression by removing LECs that promote tumor cell 
metastasis and by preserving LECs that inhibit tumor cells. Thus far, the mechanisms underlying the inhibitory effect of 
BECs on anti-tumor immunity remain unclear. Blockage of this process can avoid tumor development by regulating self-
immunity without the occurrence of intolerable complications. Hence, it is important to investigate the mechanisms 
involved in this process. Additionally, high-risk factors of HCC, such as chronic infection with hepatitis B virus or 
nonalcoholic steatohepatitis, are linked to different mechanisms. Therefore, the distinct functions of the TME components 
during the development of HCC warrant further research. It is currently established that BECs and LECs can play a 
markedly more complex role than merely offering nutrition and forming the conduits of tumor cell metastasis. Thus, 
additional research is required to decipher the mechanisms involved. Such work may result in the development of 
effective therapies targeting BECs and LECs.
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