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Abstract
The unique physicochemical properties inherent to nanoscale materials have 
unveiled numerous potential applications, spanning beyond the pharmaceutical 
and medical sectors into various consumer industries like food and cosmetics. 
Consequently, humans encounter nanomaterials through diverse exposure routes, 
giving rise to potential health considerations. Noteworthy among these materials 
are silica and specific metallic nanoparticles, extensively utilized in consumer 
products, which have garnered substantial attention due to their propensity to 
accumulate and induce adverse effects in the liver. This review paper aims to 
provide an exhaustive examination of the molecular mechanisms underpinning 
nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in 
vivo studies. Primarily, the most frequently observed manifestations of toxicity 
following the exposure of cells or animal models to various nanomaterials involve 
the initiation of oxidative stress and inflammation. Additionally, we delve into the 
existing in vitro models employed for evaluating the hepatotoxic effects of 
nanomaterials, emphasizing the persistent endeavors to advance and bolster the 
reliability of these models for nanotoxicology research.
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Core Tip: This comprehensive review explores nanoparticle-induced hepatotoxicity, focusing on diverse nanomaterials (e.g., 
silver nanoparticles, carbon nanotubes) and their impacts on hepatic function. It categorizes nanoparticles, discusses 
exposure routes, and highlights hepatotoxic mechanisms. The review emphasizes the need for comprehensive assessments, 
understanding, and responsible practices in nanotechnology to guide future research for the development of safer nanoma-
terials.
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INTRODUCTION
In the rapidly advancing field of nanotechnology, the utilization of nanomaterials has become widespread across various 
industries, promising groundbreaking applications in medicine, electronics, and environmental science. Among the 
myriad potential benefits, the unique physicochemical properties of nanoparticles (NPs) have enabled remarkable 
achievements, from targeted drug delivery systems to innovative diagnostic tools. However, this surge in nanomaterial 
applications has brought forth concerns regarding their safety, particularly in the context of hepatotoxicity[1]. This 
comprehensive review aims to delve into the intricate landscape of nanoparticle-induced hepatotoxicity, exploring the 
diverse range of nanomaterials and their impacts on hepatic function. We will navigate through recent findings on 
prominent nanomaterials, including silver nanoparticles, carbon nanotubes, quantum dots, and gold nanoparticles, 
shedding light on the complex mechanisms underlying their hepatotoxic effects[2-4]. By examining the interplay between 
nanoparticles and liver cells, such as hepatocytes and Kupffer cells, this review seeks to provide a nuanced understanding 
of the potential risks associated with nanomaterial exposure.

NPs are classified into four main groups based on structural morphology: organic, inorganic, carbon-based, and 
composite[1,5]. Organic nanoparticles, derived from compounds like proteins and lipids, exhibit non-toxic and 
biodegradable properties, making them suitable for drug delivery, imaging, biosensors, and cancer treatment[5,6]. 
Inorganic nanoparticles, including metal-based, metal oxide-based, ceramic, and semiconductor nanoparticles, offer 
tailored electrical, optical, and magnetic properties for applications in biomedical science, catalysis, and imaging[5,7]. 
Quantum dots, semiconductor nanoparticles with size-dependent optoelectronic properties, find applications in 
electronic and biomedical industries[8,9]. Carbon-based nanoparticles, such as graphene, fullerenes, and carbon 
nanotubes, demonstrate unique structural configurations and are utilized in electrical and photonic devices, biomedical 
sciences, and nanocomposites[10,11]. Composite nanoparticles integrate different components, leading to unique physical 
and chemical properties, with three main categories: simple hybrid, core or shell structured, and multifunctional 
quantum nanoparticles, applied in electronics, optoelectronics, and biomedical sciences[12].

To ensure the safety of NPs within the human body, understanding their exposure route is crucial[13-15]. NPs can be 
orally exposed through food, drinks, supplements, or nanomedicines, with absorption occurring in organs like the 
stomach and small intestine. Factors like size, charge, and concentration influence absorption, with NPs under 100 nm 
diameter taken up directly through endocytosis in the small intestine. Inhalation is another exposure route, with NPs 
deposited in different regions of the respiratory tract, potentially translocating to other organs. Elimination of NPs from 
the lungs is complex and depends on physicochemical properties. Dermal exposure, through cosmetics and medications, 
is facilitated by the skin's permeability to nanoscale particles. Skin penetration varies based on factors like particle size 
and skin condition. Overall, understanding exposure routes is vital for assessing NP-induced toxicity and ensuring their 
safe utilization.

Various NPs exert hepatotoxic effects, with silica nanoparticles (SiNPs) showing size-dependent liver injury, synergies 
with other toxins, and impacts on cholesterol biosynthesis. Nickel oxide nanoparticles (NiO-NPs), tungsten trioxide 
nanoparticles (WO3 NPs), and copper oxide nanoparticles (Nano-CuO) induce oxidative stress-related liver damage, 
apoptosis, and genotoxicity[2,16-18]. Integrative omics analyses identify key proteins and disrupted metabolic pathways 
in SiNP-induced hepatotoxicity[19]. Zinc oxide (ZnO-NPs), titanium dioxide (TiO2NPs), magnesium oxide (MgO-NPs), 
aluminum oxide (Al2O3NPs), chromium oxide (Cr2O3-NPs), and iron oxides (IONPs) exhibit diverse hepatotoxic 
mechanisms, including oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and disruptions in metabolism
[20-24] (Figures 1 and 2). Carbon nanotubes (CNTs) induce hepatotoxicity through inflammatory responses and oxidative 
stress, with variations in toxicity based on type and administration method[4]. Copper sulfide/cadmium sulfide nano-
particles (CuS/CdS-NPs), cobalt nanoparticles, and nanoclay particles also induce oxidative stress-mediated apoptosis 
and acute hepatotoxicity[25,26]. Various nanomaterials, such as nanocellulos, polystyrene nanoparticles, chitosan 
nanoparticles, hydroxyapatite nanoparticles, quantum dots, and gold nanoparticles, display hepatotoxicity through 
disrupted redox balance, altered metabolism, necrotic cell death, and impaired mitochondrial function[8,9,27-29]. The 
complexity of nanoparticle-induced hepatotoxicity highlights the need for comprehensive assessments and 
understanding for safe use.

In conclusion, this review not only synthesizes existing knowledge but also highlights critical gaps in understanding 
nanoparticle-induced hepatotoxicity. By proposing recommendations for future research, we aim to guide the scientific 
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Figure 1 Diagram showing NPs induced hepatotoxicity through crosstalk between endoplasmic reticulum stress, oxidative stress, 
autophagic and apoptotic pathways. AKT: Protein kinase B; ALR: Autophagic lysosome reformation; ATF 3/4/6: Activating transcription factor 3/4/6; Atg 5/12: 
Autophagy related gene 5/12; BAK: Bcl-2 homologues antagonist/killer; Bax: Bcl-2-associated X-protein; Bim: Bcl-2 interacting mediator of cell death; Casp 3/8/9: 
Caspase 3/8/9; CHOP: C/EBP Homologous Protein; CTSB: Cathepsin B; CTSD: Cathepsin D; DDIT3: DNA damage inducible transcript 3; DR: Death receptor; ECF-
Extra cellular fluid; EIF2AK3: Eukaryotic translation initiation factor 2-alpha kinase 3; EIF2S1: Eukaryotic translation initiation factor 2 subunit 1; ICF-Intra cellular fluid; 
IRE1: Inositol-requiring enzyme type-1; LAMP1/2: Lysosome-associated membrane protein 1/2; LC3B-Microtubule-associated proteins 1A/1B light chain 3B; LC3II: 
LC3-phosphatidylethanolamine conjugate; mTOR: Mammalian target of rapamycin; NOXA: Phorbol-12-myristate-13-acetate-induced protein 1; NPs- Nanoparticles; 
NRF1: Nuclear factor erythroid 2-related factor 1; P 62-Ubiquitin-binding protein p62; P: Phosphate; Parkin-Parkin RBR E3 ubiquitin-protein ligase; PERK: Protein 
kinase RNA like endoplasmic reticulum kinase; PGC1α: Peroxisome proliferator-activated receptor gamma coactivator 1 alpha; PI(4,5)2P: Phosphatidylinositol 4,5-
bisphosphate; PI3K: Phosphatidylinositol 3-kinase; PI4P: Phosphatidylinositol 4-phosphate;PINK: PTEN induced kinase; PIP5K1B: Phosphatidylinositol-4-phosphate 
5 kinase type 1 beta; PM: Plasma membrane; PUMA- p53 upregulated modulator of apoptosis; TFAM: Mitochondrial transcription factor A; TFEB: Transcription factor 
EB; XBP1/1S: X box binding protein-1/1S.

community toward developing safer nanomaterials and fostering responsible practices in nanotechnology. As the field 
continues to evolve, this exploration into nanotoxicology endeavors to contribute to the ethical and sustainable 
advancement of nanotechnology.

MAJOR TYPES AND APPLICATIONS OF NANOPARTICLES
Nanoparticles are categorized into four groups based on structural morphology: Organic, inorganic, carbon-based, and 
composite. Some of the most important types of nanoparticles are listed below:

Organic nanoparticles
Organic nanoparticles, derived from compounds like proteins, carbohydrates, lipids, and polymers, encompass micelles, 
dendrimers, liposomes, nanogels, polymeric NPs, and ferritin[6]. Generally non-toxic and biodegradable, they may have 
a hollow core, such as liposomes, and are sensitive to thermal and electromagnetic radiation. Formed through non-
covalent interactions, these labile organic NPs are easily cleared from the body. Nanospheres or nano-capsules, common 
polymeric forms, collectively referred to as labeled polymorphic NPs, possess properties like a high surface area to 
volume ratio, stability, inertness, ease of functionalization, and unique optical, electrical, and magnetic behaviors, making 
them suitable for applications in drug delivery, imaging, biosensors, and cancer treatment[30].

Inorganic nanoparticles
Inorganic nanoparticles, devoid of carbon atoms, are hydrophilic, non-toxic, and biocompatible, providing high 
mechanical strength and stability. Precise control over size, shape, and composition allows researchers to design 
nanoparticles with tailored electrical, optical, and magnetic properties for targeted biomedical applications[5,7].

Metal-based nanoparticles: Metal-based nanoparticles, derived from various metals through disruptive or constructive 
methods and typically ranging in size from 10 to 100 nm, including aluminum (Al), cadmium (Cd), cobalt (Co), copper 
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Figure 2 Diagram showing nanoparticles induced hepatotoxicity through inflammatory pathway and its crosstalk with oxidative stress, 
endoplasmic reticulum stress and apoptotic pathways. AP1: Activator protein 1; Apaf-1: Apoptotic peptidase activating factor 1; ASK1: Apoptosis signal-
regulating kinase 1; ATF3/4: Activating transcription factor 3/4; BAK: Bcl-2 homologues antagonist/killer; Bax: Bcl-2-associated X-protein; Bcl2: B-cell lymphoma 2; 
BclXL: B-cell lymphoma-extra-large; Bim: Bcl-2 interacting mediator of cell death; Ca++: Calcium ion; Casp 1/3/6/7/9/12: Caspase 1/3/6/7/9/12; CHOP: C/EBP 
Homologous Protein; CytC: Cytochrome C; eIF2α: Eukaryotic initiation factor 2 alpha; GSDMS: Gasdermins; IKK: IκB kinase; Iκβ: Inhibitor of nuclear factor kappa 
beta; IL-6/18: Interleukin 6/18; IL-1β: Interleukin 1 β; IRE1: Inositol-requiring enzyme type 1; JNK: Jun N-terminal kinase; mtROS: Mitochondrial reactive oxygen 
species; NFkβ: Nuclear factor kappa beta; NLRP3: NOD-like receptor protein 3; NOXA: Phorbol-12-myristate-13-acetate-induced protein 1; NPs- Nanoparticles; p53: 
Tumor suppressor protein p53; PERK: Protein kinase RNA like endoplasmic reticulum kinase; Pro-Casp 1: Pro- Caspase 1; Pro-IL-18: Pro- Interleukin 18; Pro-IL-1β: 
Pro- Interleukin 1 β; PUMA- p53 upregulated modulator of apoptosis; ROS: Reactive Oxygen Species; TNFR: Tumor necrosis factor receptor; TNFα: Tumor necrosis 
factor alpha; TRAF2: TNF receptor associated factor 2.

(Cu), gold (Au), iron (Fe), lead (Pb), silver (Ag), and zinc (Zn), exhibit unique optoelectrical properties due to localized 
surface plasmon resonance[31,32]. Specifically, alkali and noble metals like Cu, Ag, and Au, when utilized in nanoparticle 
construction, show significant absorption in the visible region of the solar spectrum[33]. The synthesis of metal 
nanoparticles with specified facets, sizes, and forms necessitates controlled conditions, and their advanced optical 
properties make them versatile across various research domains[5,34]. These nanoparticles, distinguished by their small 
dimensions and surface properties, including pore size, surface charge, etc., find applications in biomedical science, such 
as cancer treatment, disease diagnostics, radiation enhancement, drug delivery, and gene transport[35].

Metal oxide based nanoparticles: Metal oxide nanoparticles result from modifying the properties of metal-based 
nanoparticles. These nano-scale metal oxides find diverse applications in fluorescence, optical sensors, catalysts, 
biomedicine, gas sensors, and fuel cell anode materials[22,36-38]. Various synthesis methods, including inert gas 
condensation, co-precipitation, and lithography, have been used, but traditional methods often lack control over morpho-
logical structure, affecting essential nanomaterial properties[39,40]

Ceramic nanoparticles: Ceramic nanoparticles, resistant to environmental stresses, form with a solid core through heat or 
a combination of heat and pressure, incorporating metallic or non-metallic elements[41,42]. Typically composed of 
inorganic compounds like silica or alumina, they may also include metals and metal oxides, yielding diverse nano 
molecules with varying shapes, sizes, and porosities. Engineered to evade the reticuloendothelial system, ceramic NPs 
undergo size and surface composition modifications[43]. Widely used in medical applications, ceramics such as calcium 
phosphates, alumina, silica iron oxides, carbonates, and titanium dioxide have been found[44].

Ceramics also play an important role in various applications in photocatalysis, dye photodegradation, imaging, and 
catalysis[45]. Researchers aim to develop advanced ceramics with minimal cytotoxicity and enhanced biocompatibility, 
addressing challenges through innovative strategies that integrate ceramic nanoparticles with biocompatible materials, 
considering characteristics like shape, size, and physicochemical attributes[46].
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Lipid-based nanoparticles: Lipid-based nanoparticles (LBNPs), typically 10-100 nm in diameter, consist of a lipid core 
surrounded by lipophilic molecules, finding applications in oncology and biomedicine[47]. Liposomes, a key type of 
LBNP, use a phospholipid bilayer for enhanced drug solubility and stability, accommodating both hydrophobic and 
hydrophilic molecules. Incorporating cholesterol improves stability, decreases fluidity, and enhances permeability for 
hydrophobic drugs in liposomal formulations[48]. Solid lipid nanoparticles, sized between 50-1000 nm, and composed of 
physiological lipids in a solid state, offer a compelling alternative for drug delivery, featuring a matrix of mono-, di-, or 
triglycerides, fatty acids, and complex glyceride mixtures, with stability ensured by surfactants or polymers[49].

Semiconductor nanoparticles: Semiconductor nanoparticles, possessing hybrid characteristics of metals and nonmetals, 
have garnered attention for their versatility in diverse applications[50,51]. Their crucial broad bandgap, adjustable by 
researchers, makes them valuable in photocatalysis, photo optics, and electronic devices[52]. Additionally, their nano-
scale dimensions provide benefits such as increased surface area-to-volume ratio, enhanced quantum confinement effects, 
and improved catalytic activity, contributing to exceptional performance in various applications[53].

Quantum dots
Quantum dots (QDs), semiconductor nanoparticles with size- and composition-dependent optoelectronic properties (1.5 
to 10.0 nm), play a significant role in the electronic and biomedical industries[8]. Their success is attributed to superior 
features like photostability, size-dependent optical properties, high extinction coefficient, brightness, and a large Stokes 
shift, overcoming limitations of organic dyes. QDs, due to their ultrasmall size, are well-suited for imaging and 
biosensing applications. They facilitate the development of multimodal/multifunctional probes with increased surface 
area for optical trackability in vitro and in vivo, designed to detect pH, metal ions, DNA, and enzyme activity, and deliver 
various therapeutics[8].

Carbon-based nanoparticles
Carbon-based nanoparticles encompass five main materials: carbon nanotubes, graphene, fullerenes, carbon nanofiber, 
and carbon black, each with unique structural configurations and diverse applications in nanotechnology.

Graphene: Graphene, a two-dimensional carbon allotrope, is a single layer of carbon atoms arranged in a hexagonal 
lattice with exceptional properties, such as elasticity, mechanical strength, and unparalleled thermal and electrical 
conductivity. Synthesized in the laboratory, it forms a 1nm-wide honeycomb lattice, exhibiting semiconductor properties 
without an effective mass and zero band gap. Graphene demonstrates an ambipolar electric field effect, with a breaking 
strength of 42 Nm−1 and a Young's modulus of approximately 1.0, making it the strongest material ever tested. These 
attributes position graphene as a promising material for electrical and photonic devices, sensing platforms, and clean 
energy applications[5].

Fullerene: Fullerenes, a molecular form of carbon allotrope, consists of Cn clusters (n > 20) arranged on a spherical 
surface with carbon atoms at pentagon and hexagon vertices[54]. The extensively studied C60 fullerene, composed of 60 
carbon atoms, is highly symmetric and spherical, with a 0.7 nm diameter and sp2 hybridized carbon atoms. Exhibiting 
exceptional symmetry and stability, fullerenes have 20 tripled axes, 12 fivefold axes, and 30 twofold axes[54]. These 
unique properties position fullerenes as promising nanoparticles widely utilized in biomedical sciences, acting as 
inhibitors for human immunodeficiency virus, contrast agents for magnetic resonance imaging, and sensitizers for 
photodynamic therapy[5,55].

Carbon nanotubes: CNTs, unique in carbon-based nanomaterials, possess versatile characteristics like length, diameter, 
chirality, and layer number, showcasing exceptional properties and widespread applications. Composed of graphite, 
CNTs, typically with at least two layers and an outer diameter ranging from 3 nm to 30 nm, are divided into two 
categories: single-walled nanotubes (SWCNTs) and multi-walled nanotubes (MWCNTs). SWCNTs, with a diameter of 
around 1 nm, exhibit high electrical conductivity, mechanical strength, and thermal conductivity due to their nearly one-
dimensional structure, indicated by a length-to-diameter ratio of approximately 1000[56]. MWCNTs, robust cylindrical 
structures with a minimum diameter of 100 nm, demonstrate resilience and diverse structures rooted in graphene sheets, 
with an interlayer distance resembling that in graphite, about 3.3 Å. The initial proposal for gram-scale synthesis of 
double-walled carbon nanotubes in 2003 involved chemical vapor deposition, selectively reducing oxide solid solutions in 
methane and hydrogen[10,56-58]. Applications of CNTs include bicables, AFM tips, hydrogen storage, electrochemical 
electrodes, nanocomposites, field emission displays, and diverse electrical devices[59].

Composite nanoparticles
Composite nanoparticles are produced via the integration of two or more different components. The components bear 
different properties at the nanoscale level. This integration of diverse components eliminates the limitation of individual 
components which enables researchers to produce nanomaterials with specific properties and uses. These NPs exhibit 
unique physical and chemical properties and each component has strong mutual coupling effects on the other. The 
chemical properties of composite nanoparticles depend on their composition and structure. The mutual coupling effect 
between the components of composite NPs can lead to changes in the chemical properties of composite NPs[12]. 
Composite NPs are used in a variety of applications including electronics, optoelectronics, and biomedical sciences[60].

Composite nanoparticles can be classified into three main categories based on their structural features:
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Simple hybrid NPs: These types of composite NPs formed by combining two or more components without a specific 
structural hierarchy. They exhibit unique properties due to the combination of different materials[61].

Core or shell structured composite NPs: These NPs are made up of two different regions: an inner core region and an 
outer shell. These two regions of NPa are composed of two or more different materials. The core and shell structure 
influences the properties of the nanoparticles, such as electromagnetic wave attenuation capacity, etc[62].

Multifunctional quantum NPs: These NPs have multiple functionalities, such as magnetooptical, and electrochemical 
properties. The specific structure of Multifunctional Quantum Composite NP is used in applications like biosensing, 
bioassays, catalysis, and separations[12].

EXPOSURE ROUTES OF NANOPARTICLES
A myriad number of nanoparticles are manufactured from diverse materials to serve a multitude of purposes, it is crucial 
to ensure the unswerving safety of these particles within the human body. To understand the degree and mechanism of 
nanoparticle-induced toxicity, it is essential to understand their route of exposure, toxicological profile, and fate in the 
human body. The route of exposure also acts as a crucial factor in deciding the potential toxicity of NPs. The potential 
routes of NP exposure are as follows:

Oral exposure
Oral Exposure of NPs occurs following intake of food, drinks, or additives and supplements containing NPs, swallowing 
of inhaled NPs, or oral administration of nanomedicines or nano-formulations. These particles are then passed through 
the following organs esophagus, stomach, small intestine, and large intestine, and are readily absorbed in the stomach 
epithelial cells[13,14,63].

However, the absorption rate of NPs depends on multiple factors such as shape and size, concentration, pH of the 
medium, etc. The size and charge of the NPs also influence the absorption rate; positively charged NPs were captured 
through negatively charged mucus, whereas, negatively charged nano-molecules easily entered the mucus layer. Particle 
size also plays a crucial role because larger NPs required more for ingestion as well as digestion[64,65]. It has been 
observed that NPs lower than 100 nm diameter, are directly taken up by endocytosis through regular epithelial cells of 
the small intestine[66,67]. Absorption can also occur through epithelial cells of Peyer's patches in the gut-associated 
lymphoid tissue. Some other research studies proposed that oral intake of NPs could be absorbed in the gastrointestinal 
tract, from where the particles can transmigrate to the liver and spleen via lymph nodes.

Inhalation
Nanoparticles have been observed to exert their effect on human health, primarily via dermal contact or inhalation. The 
NPs inhaled during production or usage, get deposited all over the respiratory tract and the smaller particles penetrate 
the lungs where they accumulate in the alveolar regions. The larger NPs with diameters ranging from 5-30 µm usually 
reside in the nasopharyngeal region and the smaller particles, with diameters ranging from 1-5 µm tend to deposit in the 
tracheobronchial region. The smallest NPs (0.1–1 µm) deposited over the alveolar region[68,69]. The particles smaller than 
10mm are primarily absorbed inside the lung and may undergo translocation to various parts of the body including the 
kidney. Insoluble particles accumulated in the lung have the potential to trigger diverse local toxicological reactions. The 
smaller NPs easily translocated compared to the bigger ones, and after reaching the lung they can remain there for years 
and can make their way into the circulatory or lymphatic system and subsequently disseminate into other organs like the 
liver, spleen, and kidneys[15].

The elimination procedure of NPs is very complex and lengthy and depends on its physicochemical properties. The 
larger particles which are deposited at the extra-thoracic and intrathoracic bifurcation, have been trapped in the mucus 
layer and transported through the mucociliary escalator into the pharyngeal region. These mucus-laden NPs are then 
swallowed and enter into the gastrointestinal tract for further processing. The smaller particles in bronchioles and alveoli 
undergo mucus-associated transport and are then phagocytosed by alveolar macrophage. However, if these strategies are 
unable to reduce the toxicity, the lung defense system becomes stronger and eventually causes lung tissue damage[11,26,
70].

Dermal exposure
Skin, the largest organ and primary protective barrier of the human body acts as the easiest route of NP entrance. The 
skin is divided into three layers: epidermis, dermis, and hypodermis While the epidermis effectively prevents the entry of 
micrometer-sized particles, but less effective as a barrier for particles in the nanoscale range. Dermal exposure to 
nanoparticles is unavoidable with the use of various cosmetics and medications. Several experimental investigations 
examined the feasibility of nanoparticle penetration through the skin barrier and reported that NPs are unable to traverse 
the skin whereas, contrasting findings from other studies, specifically those focused on metal NPs such as iron NPs, 
reported that they can successfully penetrate through hair follicles and ultimately reached to the basal and spinous layers
[71,72] The epidermal entry of NPs is influenced by a variety of factors such as exposure medium, medium pH, 
temperature, etc[13,14,63].
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The existing evidence suggests that NPs with a diameter of about 4 nm can permeate intact skin whereas, when the 
size grows up to 45 nm, NPs can only permeate via impaired or injured skin[73]. Beneath the dermal layer rich with blood 
vessels, macrophages, lymph vessels, dendritic cells, and nerve endings. Consequently, particles absorbed beneath 
distinct layers of the skin undergo swift transport within diverse circulatory systems[1].

NPS MEDIATED HEPATOTOXICITY
Silica nanoparticles
A series of investigations revealed that the administration of silica nanoparticles with smaller diameters (30 nm) exhibited 
more liver injury or lethality compared to larger ones (1000 nm)[2,74,75]. Suggesting an inverse correlation between the 
silica nanoparticle size and hepatotoxicity. Also in combinatorial toxicity assessment, SP30 (30 nm), the smallest NPs was 
found to synergize the other known chemical liver toxins (carbon tetrachloride, paraquat, cisplatin) in causing hepatic 
damage[75]. In another study, increased biodistribution with reduced urinary excretion was observed for lower aspect 
ratio of mesoporous silicon nanoparticles[76]. In an in vitro study when four amorphous SiNPs with different surface 
areas were applied on HepG2 cells, a clear perturbation in cholesterol biosynthesis was observed. Increased cholesterol 
biosynthesis was found to be directly proportional to the increased surface area, which might have an impact on steroido-
genesis and bile formation[19]. In a metabolomic study, the same group demonstrated amorphous SiNPs mediated 
depletion of glutathione, NADPH oxidase mediated reactive oxygen species (ROS) production, and alterations in anti-
oxidant profile indicating perturbation of glutathione metabolism and glutathione pool in hepatocytes[77].

In a dose and time-dependent manner, mesoporous SiNPs (MSN) caused cytotoxicity in L-02 cells. In NLRP3 knockout 
mice and caspase-1 knockout mice model, MSN-promoted inflammation and hepatotoxicity were found to be abolished 
compared to the normal mice, suggesting mSiNPs mediated ROS overproduction followed by activated NOD-like 
receptor protein 3 (NLRP3) inflammasome, resulting into pyroptosis through caspase-1 activation[78]. Rat exposed to 
silica NPs compared to control exhibited altered liver biochemical parameters such as elevated levels of low-density 
lipoproteins (LDL), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanina aminotransferasa (ALT) 
along with procalcitonin, iron, phosphorus, and potassium concentration. Histological modifications include Hydropic 
degeneration, Karyopyknosis, Sinusoidal dilatation, Hyperplasia of Kupffer cells, and infiltration of inflammatory cells 
with lowered liver index. Also negatively affects the expression of phase I and phase II drug metabolizing and drug 
transporter genes (slc2a1, cyp4a12, ephx2, nat2)[79].

Kupffer cells are well-known resident macrophages of the liver, contributing to the maintenance of liver normal 
physiological activity and homeostasis. Excessive accumulation of ROS and simultaneous release of bioactive mediators 
(H2O2, NO, and TNFα) indicates SiO2NPs mediated activation and hyperplasia of KCs. BRL cells exhibited reduced 
viability, and structural alterations along with elevated levels of marker enzymes [lactate dehydrogenase (LDH), AST] 
when co-cultured (contactless) with SiNPs activated KCs, clearly suggesting that KCs activated by SiO2NPs can cause 
liver injury via the release of H2O2, NO, and TNFα. In addition to that, infiltration of inflammatory cells and subsequent 
increase of TNFα, monocyte, lymphocytes, and neutrophils in the liver can be correlated with SiNPs activated KCs 
mediated inflammation in the liver[80].

Analysis of 1H nuclear magnetic resonance (1H NMR) results, unveiled lipid metabolism disorder in rats receiving 
intratracheal instillation of SiNPs causing hepatotoxicity in a dose-dependent manner. Biochemical analysis showed a 
significant increase in ALT, AST, triglyceride (TG), and LDL-C levels but a decrease in HDL-C levels in the treated group. 
Ten metabolic pathways were affected due to treatment, including the metabolism of amino acids (glutamate, cysteine, 
aspartate), purines, and glucose-alanine cycle that resulted in the production of 11 different metabolites compared to 
control[81].

Autophagy-mediated liver toxicity involves autophagic lysosomal reformation (ALR) an event where anomalous 
autophagy fails to terminate, which results in a persistent accumulation of enlarged autolysosomes. Mouse hepatocytes 
on exposure to SiO2NPs prevent conversion of PI(4)P to PI(4,5)P2 on enlarged autolysosomal membrane due to loss of 
PIP5K1B, also clathrin fails to be recruited, leading to suppression of ALR and resulted into enlarged autolysosomes[82]. 
The molecular mechanism behind SiNp-induced autophagosome synthesis, accumulation, and autophagic dysfunction 
was worked out on L-02 cells. When treated with different concentrations of SiNPs, readily get internalized and induce 
ROS production, which in turn causes ER stress and UPR. Upregulated expressions of ATF4 and DDIT3 indicate 
involvement of EIF2AK3 and ATF6 pathway but not ERN1-XBP1 pathway. ATF4 and DDIT3 then transcriptionally 
upregulate expressions of LC3B and ATG12 (autophagic genes) that result in autophagosome formation[83]. In HepG2 
cells accumulation of amorphous SiNPs in mitochondria leads to excessive ROS generation that in turn triggers 
autophagy and autophagic cell death in hepatocytes via the phosphatidylinositol 3-kinase (PI3K)/serine/threonine 
kinase/mammalian target of rapamycin (mTOR) pathway[84].

Overexpression of p53, bax, and caspase-3 in contrast to bcl-2 downregulation along with ROS generation in HepG2 
cells insulted with SiNPs suggests activation of cell cycle check point genes and apoptotic pathway in accordance to 
cytotoxicity due to oxidative stress. Restoration of cell viability with an altered apoptotic marker profile was observed in 
the same cell when co-treated with vitamin C, a ROS scavenger[85]. Amorphous SiNPs exposure to human cells (HL-
7702) and rat cells (BRL-3A) showed elevated expression of p53, Bax, cleaved caspase-3, and negative expression of Bcl-2 
and caspase-3 levels, with increased ROS generation and decreased GSH level indicating oxidative stress-mediated 
cytotoxicity that leads to apoptotic activation via p53/casp-3/Bax/Bcl-2 pathway. Human liver cells exhibited more 
sensitivity than rat liver cells[86].
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Compared to normal mice, SiNPs exhibited more severe effects in the liver of metabolic syndrome mice though 
improved insulin resistance. It has been established that SiNP exposure can accelerate liver damage in metabolic 
syndrome mice following deposition to mitochondria which results in mitochondrial injury and overproduction of ROS. 
That aggravated liver fibrosis (higher collagen deposition), hepatic ballooning, DNA damage (genotoxicity), and infilt-
ration of inflammatory cells[87]. A recent study reveals SiNPs induced hepatotoxicity via perturbating mitochondrial 
quality control (MQC) process, promoting excessive mitochondrial fission (DRP1, FIS1, and MFN2 were up-regulated 
under SiNPs exposure, but MFN1 was down-regulated), mitophagy disorder (PINK/Parkin signaling, up-regulated 
PINK1 and p-Parkin, as well as an enhanced conversion of LC3B-I to LC3B-II) and downregulating mitochondrial 
biogenesis (inhibited mitochondrial biogenesis via PGC1α-NRF1-TFAM signaling, decline PGC1α, NRF1 and TFAM), 
leading to mitochondrial dysfunction followed by hepatocyte damage and liver biotoxicity[88]. From the above findings, 
it can be speculated that mitochondrial injury & instability in hepatocytes due to SiNP exposure resulted in liver 
oxidative stress.

Recent in vitro as well as in vivo investigation results indicate silicon NP insult can trigger LDH, ALT, and AST in 
serum concentration owing to hepatic damage. Compromised antioxidant enzyme profile [catalase (CAT), SOD, and 
GPx] with elevated levels of oxidative stress markers [NO, malondialdehyde (MDA), PCO, and H2O2] and MDA levels 
are engaged in hepatic ROS production[89]. Altered hepatic metabolism is observed in both free fatty acid - treated L-O2 
cells and ApoE-/- mice model receiving SiNps treatment. Increased fatty acid biosynthesis, lipid deposition, liver total 
cholesterol/TG index along with decreased β-oxidation and lipid efflux resulting into perturbated lipid metabolism can 
be corroborated with the induction of oxidative stress-related liver injuries, may help the acceleration of liver diseases like 
metabolic associated fatty liver disease[90]. More over-upregulated expressions of pro-apoptotic genes (Bax, p53, 
Caspase-9/3) and downregulated anti-apoptotic genes Bcl-2 along with histopathological alterations of the liver such as 
sinusoidal dilatation, Kupffer cell hyperplasia, infiltration of inflammatory cells strongly indicates SiNPs induced hepatic 
toxicity via ROS-activated caspase signaling pathway, leading to induction of apoptosis in the liver[89]. Through 
integrative proteomic and metabolomic analyses, Zhu et al[91] identified key proteins (RPL3, HSP90AA1, SOD, PGK1, 
GOT1, PNP) indicative of abnormal protein synthesis, oxidative stress, and metabolic dysfunction in SiNP-induced 
hepatotoxicity. Metabolomic data revealed disruptions in vital metabolites [glucose, alanine, GSH, CTP, adenosine 
triphosphate (ATP)]. Bioinformatic analysis highlighted disturbances in glucose and amino acid metabolism, suggesting 
potential exacerbation of oxidative stress and liver injury. Key proteins associated with SiNP-induced hepatotoxicity 
include SOD, TKT, PGM1, GOT1, PNP, and NME2[91]. This study underscores the power of integrative omics analyses 
for nanoparticle toxicity assessments. Follow Table 1 for a comprehensive account.

Metal oxides nanoparticles
Consult Tables 2-10 for a comprehensive account of different metal oxide-induced hepatotoxicity.

Nickel oxides nanoparticles: The findings of several stress assays, liver function tests, and histopathology analyses make 
it abundantly evident that rats given NiO-NPs experience nitrative stress and oxidative stress-related liver damage[92,
93]. Chang et al[16] demonstrated that the liver cells of rats injected with NiO underwent ER stress and that this brought 
about the induction of apoptosis via many routes, including the PERK/eIF-2α, IRE-1α/XBP-1S, and caspase-12/-9/-3 
pathways. A different investigation using a comparable experimental design found that the nuclear factor kappa B (NF-
κB) signaling pathway is associated with hepatotoxicity[94].

In the HepG2 cells model, NiONPs caused cytotoxicity through ROS production and Bax/Bcl-2 pathway-mediated 
apoptotic induction. Also treated cells exhibited micronuclei formation, chromatin condensation, and DNA damage 
suggesting NiONPs mediated genotoxicity[95]. NiO was additionally found to induce hypoxic stress in the same human 
liver cells in a concentration-dependent manner, as evidenced by the activation of hallmark candidate genes, hypoxia-
inducible transcription factor-1α (HIF-1α), and miR-210 microRNA and decreased levels of ribosome biogenesis. Nitric 
oxide (NO) levels that were too high caused Ca++ influx, which in turn led to mitochondrial instability and oxidative 
stress, further encouraging lysosomal degradation in connection with autophagic processes. Subsequently led to the 
development of apoptosis via the p53 and MAPKAPK-2 signaling pathways[96]. Rat liver and HepG2 cells under Nano-
NiO exposure resulted in hepatic fibrosis. Upregulation of transforming growth factor 1 beta (TGF-β1), Smad2, Smad3, 
alpha-smooth muscle actin (α-SMA), matrix metalloproteinase 9 (MMP9), tissue inhibitors of metalloproteinase1 but 
simultaneously downregulation of E-cadherin and Smad7 in both models can be corroborated with hepatic fibrosis via 
activation of TGF-β1/Smad pathway, epithelial-mesenchymal transition (EMT), reformation and deposition of 
extracellular matrix[97]. A recent study reported NiNps-mediated hepatic injury following hepatic inflammatory 
response, ER stress, abnormal lipid metabolism that leads to hepatocyte apoptosis[98]. NiNPs exposure (15-45 mg/kg) in 
rats induced dose-dependent liver dysfunction, histological injuries, and oxidative stress. Elevated NF-kβ, nitrative stress 
markers, and inflammatory and apoptotic mediators were observed. The study highlights Ni NPs-induced hepato-
toxicity, crucial for health risk assessment[99].

Tungsten trioxide nanoparticles: WO3 nanorods of varying lengths have been shown to cause hepatotoxicity in mice 
when given intraperitoneally. This effect is evident in the form of hepatocytic lesions, which include cellular edema, 
nuclear pyknosis in most hepatocytes, cytoplasmic vacuolation, and hydropic degeneration in hepatocytes surrounding 
the central vein. Additionally, liver function is impaired, as evidenced by elevated levels of serum ALT and AST, which 
are caused by oxidative stress (increased intracellular ROS, significant reduction in GSH and SOD activity), as well as an 
inflammatory response [increased NF-κB, tumor necrosis factor alpha (TNF-α), IFN-γ, and interleukin (IL)-4]. Shorter 
nanorods showed greater toxicity than longer nanorods in terms of severity. Adversity of WO3 nanorod was decreased 
by melatonin administration[17].
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Table 1 Effects and molecular mechanisms underlying SiO2NPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & Mechanism Ref.

SiO2NPs 15 nm (TEM) HepG2 cell 1-200 ug/mL for 72hrs. Bcl-2, GSH, Cell viability (decreased); p53, 
Bax, caspase-3, ROS production, LPO 
(increased)

[85]

Oxidative stress & Apoptosis

SiO2NPs 15 nm (TEM) Kupffer cells from 
Sprague Dawley rats; 
Sprague Dawley rats

50, 100, 200, 400, and 800 
μg/mL for 24 h. 50 
mg/kg single (i.v.) 

ROS, AST, LDH, TNFα, H2O2, NO 
(increased); Kupffer cells (activation); Infilt-
ration of inflammatory cells 

[80]

Activated Kupffer cells-mediated inflam-
mation in liver toxicity

SiO2NPs 30, 50, 70, 300, 1000 
nm (TEM)

BALB/c male mice 10-40 mg/kg (i.v.) ALT, AST (increased) [75]

Acute liver injury

Amorphous SiO2
NPs

62.26nm (DLS) HepG2 25, 50, 75, 100 μg/mL, 24 
h

ROS levels; Autophagy and autophagic cell 
death via PI3K/Akt/mTOR pathway

[84]

Oxidative stress

Amorphous SiO2
NPs

aSiNP-189 (20nm), 
aSiNP-116 (50nm), 
aSiNP-26 (110nm), 
aSiNP-8 (250nm) 
(EM)

HepG2 10–200 μg/mL, 24 h Cholesterol biosynthesis (increased); May 
affect steroidogenesis & bile formation

[19]

Amorphous SiO2
NPs

19.8 ± 2.7 nm 
(TEM)

HL-7702 cells; BRL-
3A cells

31.4–500 μg/mL, 72 h p53, Bax, cleaved caspase-3 (increased); GSH 
levels, caspase-3, Bcl-2 (decrease); Activation 
of p53/casp-3/Bax/Bcl-2 pathway; Human 
cells are more sensitive than rat cell

[86]

Oxidative stress & apoptosis

SiO2NPs 30 nm (TEM) Mouse hepatocytes 500 μg/mL, 24 h ALT, AST (increased); ALR (blockage); 
Enlarged autolysosomes 

[82]

Inflammation

Amorphous SiO2
NPs

202.3 (DLS) HepG2; ICR mice 50 mg/kg b.w. for 24 h 
(oral)

GSH, NADPH oxidase depletion; ROS 
(increased); Altered GSH metabolism

[77]

Oxidative stress

SiO2NPs 10 nm (BET) Albino Wistar rats 2 mg/kg daily 20, 35 or 50 
injections (i.p.)

ALP, AST, ALT, LDH, procalcitonin, iron, 
phosphorus, potassium (increased); Phase I 
and II drug metabolizing and transporting 
enzymes (downregulation); Hydropic 
degeneration, karyopicnosis, Sinusoidal 
dialation, Kupffer cell hyperplasia, lowered 
liver index, infiltration of inflammatory cells

[79]

Oxidative stress & Inflammation

SiO2NPs 15.4 ± 1.8 nm 
(TEM)

Kunming mice 
(normal & metabolic 
syndrome model)

10 mg/kg b.w. daily 30 d 
(oral)

Liver fibrosis (collagen deposition); Hepatic 
ballooning; DNA damage (genotoxicity) ROS 
production, mitochondrial damage, infilt-
ration of inflammatory cells

[87]

Mitochondrial instability & inflammation

Mesoporous SiO2
NPs

109.2 (DLS) L02 cells; BALB/c 
mice

5–120 μg/mL, 24 and 48 
h; 50 mg/kg 3 times a 
week for 3 wk (i.v.) 

ALT, AST, ROS (increased); NLRP3 inflam-
masome activation; Pyroptosis via caspase-1 
activation

[78]

Oxidative stress and inflammation

SiO2NPs 58 nm (TEM) L-02 cells 6.25, 12.5, 25, 50, and 100 
μg/mL) for 12 h and 24 h

ROS production; ER stress; Activation of 
EIF2AK3 and ATF6 pathway; Induction of 
autosome formation

[83]

Oxidative stress

Affect mitochondrial quality control (MQC) 
process, Mitochondrial fission (increased); 
Induced mitophagy via activated 

SiO2NPs 58.04 ± 7.41 (TEM) L02 cells 12.5, 25, 50, 100 μg/mL, 
24 h

[88]
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PINK/Parkin signaling pathway; Decreased 
mitochondrial biogenesis via PGC1α-NRF1-
TFAM signaling pathway; Mitochondrial 
dysfuntion 

Mitochondrial dysfunction & oxidative 
stress

SiO2NPs 58.11 ± 7.30 nm 
(TEM)

Sprague dawley rats 1.8, 5.4, 16.2 mg/kg b.w. 
(i.t.)

ALT, AST, TG, LDL-C (increased) HDL-C 
(decreased); Impact on Purine, amino acids 
metabolism, glucose-alanine cycle

[81]

Metabolic disorder

SiO2NPs 15nm (XRD) Wistar rat 25 and 100 mg/kg b.w. 
for 28 consecutive days 
(i.p.)

AST, ALT, LDH, NO, MDA, PCO, H2O2, Bax, 
p53, Caspase-9/3 (increased)

[89]

CAT, SOD, GPx, Bcl2 (decreased)

Oxidative stress & apoptosis

SiO2NPs 59.98nm (TEM) Free Fatty Acid 
treated – L-02 cells; 
ApoE-/- mice

1.5, 3, 6 mg/kg b.w once 
per week for 12 times (i.t.)

LDH, AST, ALT, MDA (increased); 
GSH/GSSG (decreased); Fatty acid synthesis 
(increased); β-oxidation(decreased); 
Disturbed amino acid & lipid metabolism; 
Lipid accumulation leads to ER stress; 
Downregulated Nrf2 signaling

[90]

Oxidative stress, altered lipid metabolism

Akt: Protein kinase B; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ATF6: Activating transcription factor 
6; Bax: Bcl-2 associated X protein; Bcl2: B-cell lymphoma 2; CAT: catalase; DNA: Deoxy ribonucleic acid; EIF2AK3: Eukaryotic translation initiation factor 2-
alpha kinase 3; ER: Endoplasmic reticulum; GPx: Glutathione peroxidase; GSH: Glutathione; GSSG: Glutathione disulfide.H2O2-hydrogen peroxide; HDL-
C: High-density lipoprotein; LDH: Lactate dehydrogenase; LDL-C: Low-density lipoprotein; LPO: Lipid peroxidation; MDA: Malondialdehyde; mTOR: 
Mammalian target of rapamycin; NADPH: Reduced nicotinamide dinucleotide phosphate; NLRP3: NOD-like receptor protein 3; GSH: Glutathione; NO: 
Nitric oxide; NRF1/Nrf2: Nuclear factor erythroid 2-related factor1/2; p53-tumor suppressor protein p53; PGC1α: Peroxisome proliferator-activated 
receptor gamma coactivator 1 alpha; PI3K: Phosphatidylinositol 3-kinase; PINK: PTEN induced kinase, ROS: Reactive oxygen species, SOD: Superoxide 
dismutase; TFAM: Mitochondrial transcription factor A; TG: Triglyceride; TNFα: Tumor necrosis factor alpha.

Copper oxide nanoparticles: Transmission electron microscope investigation has confirmed the accumulation and distri-
bution of CuONPs in rat liver tissue after oral administration. This would indicate that CuONPs can be easily absorbed 
through the intestinal wall and transported to the liver via blood. Serum levels of bilirubin that are high, heightened 
catalase and SOD activity, and altered glutathione metabolism enzyme profiles [glutathione reductase, GPx, and 
glutathione S-transferases (GST)], all strongly suggest that NPs exacerbated oxidative stress-related liver damage[100]. 
The primary marker of hepatic injury is an increase in vital enzymes such as serum ALT, and serum AST in the liver. 
CuONP-treated Wister rats have been shown to have histopathological changes, such as pyknotic, pleomorphic nuclei, 
binucleated hepatocytes with an increased population of apoptotic cells, with elevated levels of AST, ALT, and decreased 
levels of albumin in serum[18]. Mice receiving both chemically and biologically synthesized CuO-NPs (CNPs and BNPs), 
but mostly BNPs, showed distinct histopathological, biochemical, and apoptotic changes. Various types of histopatho-
logical alterations in hepatic tissues against their normal functioning range from hydropic degeneration and vacuol-
ization to cell necrosis, loss of plasma membrane, more eosinophilic cytoplasm, karyorrhexis and complete loss of nucleus 
in few cells, activated Kupffer cells, lymphocytic infiltration around necrotized cells and congestion in sinusoids. 
Biochemical examination showed elevated levels of serum ALT and AST. Increased expression pattern of P53, Casp-3 
immunoreactivity suggested induction of apoptosis due to CuO toxicity in liver cells[101]. A comparable study has 
reported additional architectural abnormalities, such as ER swelling with lower count, increased intracellular space, fat 
accumulation, and cellular shrinkage related to the distribution of Nano-CuO in the liver. These discrepancies have been 
shown to affect hepatocyte growth, metabolism, and viability in both in vitro and in vivo investigations. JNK, PERK, C/
EBP homologous protein (CHOP), ATF4, eIF2α, IRE1, Calpain, GRP78, ATF6, Bax, Caspase-3, and Caspase-12 have all 
been shown to have upregulated expressions in treatment group while Bcl-2 expression level gets diminished, is 
consistent with ROS-mediated oxidative stress-induced activation of the ER-stress pathway, that triggered apoptosis in 
liver tissue cells[102]. The liver of adult rats treated with CNPs (chemically synthesized CuO NPs) showed dose-
dependent genotoxicity (DNA tailing), an enhanced oxidative stress response (lipid peroxidation), and histopathological 
changes (dilation and congestion of sinusoids) in contrast to GNPs (green synthesized CuO NPs)[103]. Mild to severe 
deleterious alterations in hepatic tissues including disorganized hepatic rays, dilated sinusoids with congestion, 
hepatocytic necrosis, glycogen breakdown, hemosiderosis, steatosis, hyperplasia of the bile duct and fibrous tissue prolif-
eration, anti-inflammatory cell infiltration with caspase 3 immunoreactivity were also observed against the adminis-
tration of nano-Cuo in dose-dependent manner[104].

Zinc oxide nanoparticles: In a study, Pasupuleti et al[20] reported that when SD rats were orally given nano-sized and 
micro-sized ZnO (5-2000 mg/kg), compared to micro-sized zinc oxide, nano-size zinc oxide exhibited an inverse dose-
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Table 2 Effects and molecular mechanisms underlying NiONPs & NiNPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

NiO NPs 44 nm (TEM) HepG2 cells 2-100 μg/mL for 24 h Cell viability (reduced); ROS 
(increased); Micronuclei induction, 
chromatin condensation and DNA 
damage; bax and caspase-3 
(upregulated); bcl-2 (downregulated)

[95]

Oxidative stress, apoptosis

NiO NPs 20 nm (TEM) Wistar rat 0.015, 0.06 or 0.24 mg/kg b.w. 
twice a week for 6 wk (i.t.)

NO, TNOS, iNOS, ·OH, LPO, HO1 
(increased); CAT, GSHPx, T-SOD and 
TAOC, MT1 (decreased)

[93]

Oxidative & nitrative stress

NiO NPs 20 nm (SEM) Wistar rat 0.015, 0.06, and 0.24 mg/kg 
b.w. twice a week for 6 wk (i.t.)

GRP78, CHOP (increased); Activation 
of PERK/eIF-2α, IRE-1α/XBP-1S, and 
caspase-12/-9/-3 pathways

[16]

ER stress, apoptosis

NiO NPs 20 nm (SEM) Wistar rat 0.015, 0.06, and 0.24 mg/kg 
b.w. twice a week for 6 wk (i.t.)

ALT, AST, ALP, GGT, IL-1β and IL-6, 
TNF-α, NIK, IKK-α, NF-κB (increased); 
IL-4, IL-10, IκB(α) (decreased); 
Activation of NF-kB signalling 
pathway

[94]

Inflammation

NiO NPs 13.16 ± 2.98 nm 
(TEM)

Wistar rat 125, 250 and 500 mg/kg single 
dose (oral)

ALP, LDH, ALT, AST, LPO (upregu-
lation); GSH, SOD (downregulation)

[92]

Oxidative stress

NiO NPs 21.6 ± 3.6 nm 
(TEM)

HepG2 5, 10, 25, 50 and 100 μg/mL, 24 
h

HIF-1α, miR210, p53, Caspase-3, 8 and 
9, NO, MMP (increased); Phagosome 
formation by lysosomal pathway

[96]

Hypoxia & oxidative stress, apoptosis

NiO NPs 44 nm (TEM) Wistar rat; HepG2 0.015, 0.06, and 0.24 mg/kg 
twice a week for 9 wk (i.t.); 25-
200 μg/mL

TGF-β1, Smad2, Smad3, α-SMA, 
MMP9, TIMP1, EMT (upregulation); 
E-cadherin, Smad7 (downregulation); 
activation of TGF-β1/Smad pathway

[97]

Hepatic fibrosis, ECM deposition

NiNPs 55.8 ± 14.0 nm 
(TEM)

C57/BL6 mice 10, 20 and 40 mg/kg/d for 7 
and 28 d

ALT, AST, Ire1α, Perk and Atf6, TG 
increased; Lipid metabolism 
dysfunction; Inflammation

[98]

ER stress, apoptosis

OH: Hydroxyl radical; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; Atf6: Activating transcription factor 
6; CAT: Catalase; CHOP: C/EBP Homologous Protein; ECM: Extra cellular matrix; eIF2α: Eukaryotic initiation factor 2 α; EMT: Epithelial mesenchymal 
transition; GGT: Gamma-glutamyl transpeptidase; GRP78: Glucose regulated protein 78; GSH: Glutathione; GSHPx: Glutathione peroxidase; HIF-1α: 
Hypoxia inducible factor 1; HO1: Heme oxygenase 1; IKK-α: IκB kinase alpha; IL-1β: Interleukin 1 β; IL-6: Interleukin 6; iNOS: Inducible nitric oxide 
synthase; IRE-1α: Inositol-requiring enzyme type 1α; IκB(α): Inhibitor kappa B alpha; LDH: Lactate dehydrogenase; LPO: Lipid peroxidation; miR210: 
miRNA210; MMP9: Matrix metallopeptidase 9; MMP: Mitochondrial membrane potential; MT1: Metallothionein 1; NF-κB: Nuclear factor kappa beta; NIK: 
NF-κB-inducible kinase; NO: Nitric oxide; p53-tumor protein p53; PERK: Protein kinase RNA like ER kinase; Smad2: Suppressor of mothers against 
decapentaplegic2; SOD: Superoxide dismutase; TAOC: Total antioxidative capacity; TG: Triglyceride; TGF-β1: Transforming growth factor 1 beta; TIMP1: 
TIMP metallopeptidase inhibitor 1; TNF-α: Tumor necrosis factor α; TNOS: Total nitric oxide synthase; TSOD: Total superoxide dismutase; XBP-1S: X box 
binding protein-1S; α-SMA: Alpha smooth muscle actin.

dependent increase in AST and ALT, that means nano-sized ZnO have shown higher toxicity at lower doses. Suggesting 
liver tissue assault and degeneration. Contrary to this result, Yang et al[105] demonstrated dose-dependent nanotoxicity 
of ZnO in mice models. A significant decrease in antioxidant (GSH) level causes an imbalance between oxidants and 
antioxidants, resulting in oxidative stress in the liver. Elevated expressions of transcription factor (xbp-1), ER chaperons 
(grp78, grp94, pdi-3), and phosphorylation of PERK and eIF2α in association to ER swelling and damage in hepatocytes 
strongly indicate ER stress. Upregulated expressions of proapoptotic genes (bax, chop), initiator caspase (Casp-9,12), 
effector caspase (casp-3), and subsequent diminished expression of bcl2, phosphorylation, and activation of JNK and 
CHOP/GADD153 strongly suggested ER stress-mediated opening of apoptotic pathways in liver tissue treated with 
nano-ZnO. Exposure to ZnONPs produces histological and histochemical modifications in liver tissues that may affect 
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Table 3 Effects and molecular mechanisms underlying WO3NPs induced hepatonanotoxicity

NPs Size Tested 
model Dose & route of administration Effects & mechanism Ref.

WO3 
NPs

60-70 nm, length WO3nanorods 
shorter (125−200 nm) and longer 
(0.8−2 μm)

BALB/c 
mice

2.5/5/10/20 mg/kg/d of shorter WO3 nanorods; 
2.5/5/10/20 mg/kg/d longer WO3 nanorods for 
14 d (i.p.)

ALT, AST; NF-κB, TNF-α, IFN-γ, IL-
4 (increased); GSH, SOD 
(decreased)

[17]

Oxidative stress, inflammation

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; GSH: Glutathione; IFN-γ: Interferon gamma; IL-4: Interleukin 4; NF-κB: Nuclear factor 
kappa B; SOD: Superoxide dismutase; TNF-α: Tumor necrosis factor α.

Table 4 Effects and molecular mechanisms underlying CuONPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

CuO-NPs 33 nm (XRD) Wister rats 300 mg/kg b.w. per day for 7 
d (i.g.)

ALT, AST (increased) [18]

CuO- NPs 40 nm (TEM) Mature rats (Rattus 
norvegicus var. 
albinos)

0.5, 5, and 50 mg/kg b.w./d 
for 14 d (oral)

CAT, GPx, GR (increased) GST (decreased) [100]

CuO-NPs BNPs 4.14-12.82 
nm CNPs 4.06-
26.82 nm (XRD)

Mature mice 500 mg/kg b.w. single dose 
(oral)

ALT, AST, P53, Caspase - 3 (increased); 
Hepatic necrosis

[101]

Nano-CuO 20-40 μm (TEM) BRL-3A cells; Wister 
rat

5, 10, 20 μg/mL; 10 μg/g 
b.w. for 60 d (i.n.)

ALT, AST, T-BIL, D-BIL, I-BIL (increased) 
ALP (decreased); SOD (decreased); MDA, 
iNOS, GSH-PX (increased); MCP-1, IL-1, IL-
1β, TNF-α, IL-6 (increased); JNK, PERK, 
CHOP, ATF4, eIF2α, IRE1, Calpain, GRP78, 
ATF6, Bax, Caspase-3, Caspase-12 
(upregulated)

[102]

Oxidative stress induced ER stresspathway 
activation

CuO-NPs GNPs & CNPs Sprague dawley rat 50 & 100 mg/kg b.w. twice a 
week starting before mating 
(oral)

CAT, GSH, GPx (decreased) [103]

CuO-NPs < 50 nm (TEM) Wistar rat 5 mg, 10 mg, 25 mg/kg b.w. 
per day for 9 d (i.p.)

Mild to severe Liver tissue damage including 
necrosis of hepatocyte, anti-inflammatory 
cell infiltration

[104]

ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ATF4/6: Activating transcription factor4/6; Bax: Bcl-2 
associated X protein; CAT: Catalase; CHOP: C/EBP Homologous Protein; D-BIL: Direct bilirubin; eIF2α: Eukaryotic initiation factor 2 α; BNP: Biologically 
synthesized nanoparticle; CNP: Chemically synthesized nanoparticle; GNP: Green nanoparticle; ER: Endoplasmic reticulum; GPx: Glutathione peroxidase; 
GR: Glutathione reductase; grp78: Glucose regulated protein 78; GSH: Glutathione; GSH-PX: Glutathione peroxidase; GST: Glutathione-S-transferase; I-
BIL: Indirect bilirubin; IL-1: Interleukin 1; IL-1β: Interleukin 1 β, IL-6: Interleukin 6; iNOS: Inducible nitric oxide synthase; IRE-1: Inositol-requiring enzyme 
type 1; JNK: Jun N-terminal kinase; MCP-1: Monocyte chemoattractant protein 1; MDA: Malondialdehyde; P53: Tumor protein p53; PERK: Protein kinase 
RNA like ER kinase; SOD: Superoxide dismutase; T-BIL: Total bilirubin; TNF-α: Tumor necrosis factor α.

normal functioning. Degenerative liver cells exhibited nuclear changes (nuclear membrane irregularity, binucleation, 
nuclear vesiculation, anisokaryosis, and karyolysis), cytoplasmic changes (cytoplasmic vacuolation with parietal 
cytoplasmic swelling), and glycogen depletion followed by necrosis under ZnO insult. Inflammatory signs were 
sinusoidal dilation following Kupffer cell activation and enlargement, infiltration of inflammatory cells at lobular and 
portal triad[106]. ZnO-NPs-induced inflammatory liver injury via the production of inflammatory mediators (NO, TNF-, 
IL-6, C reactive protein, immunoglobulin G) has been documented[107]. Human liver cell HepG2 in response to short 
exposure to ZnO exhibited oxidative stress-mediated cytotoxic effects leading to LDH leakage, DNA damage, reduction 
in MMP, and increment in the ratio of proapoptotic/antiapoptotic proteins that lead to activation of mitochondrial 
apoptotic pathway. In addition to that ZnO was found to induce the phosphorylation of JNK, P38, and P53ser15 without 
any significant changes in their expression level[108]. Above mentioned hepatic histopathological and immunohisto-
chemical alterations along with oxidative stress are found to be promoted via modulation of JNK/p38MAPK and the 
STAT-3 signaling pathways[109]. A separate investigation in HepG2 cells revealed that ZnONPs override the toxic effects 
of ZnO (zinc oxide), exhibiting more hepatocyte inactivation, oxidative stress, mitochondrial damage, elevated 



Das SK et al. Nanoparticle and hepatotoxicity

WJH https://www.wjgnet.com 578 April 27, 2024 Volume 16 Issue 4

Table 5 Effects and molecular mechanisms underlying ZnONPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

ZnO NPs Micro size; Nano 
size 63 nm (SEM)

Sprague Dawley 
rat

5, 50, 300, 100, 2000 mg/kg 
b.w for 14 d (oral) 

AST, ALT (increased) [20]

ZnO NPs 35 nm (TEM) Wistar albino rats 2 mg/kg b.w. for 21; Days 
(i.p.)

Histopathological alterations; Kupffer cell activation [106]

Inflammation

ZnO NPs 50 nm (TEM) Wistar albino rats 600 mg/kg/b.w and 1 
g/kg/b.w for 5 d

ALT, NO, TNF-α, IL-6, CRP, IgG (increased) [107]

Inflammation

ZnO NPs 80 nm (TEM) C57BL/6 mice 200 mg/kg/d (low dose) and 
400 mg/kg/d (high dose) for 
90 d (oral)

ALT, AST (increased); grp78, grp94, pdi-3, xbp-
1(increased ER stress related proteins); Increased 
phosphorylation of PERK & eIF2α; caspase-3, 9, 12 
(apoptosis); phosphorylation of JNK, and 
CHOP/GADD153; upregulation of Chop, Bax

[105]

ERstress mediated activation of apoptotic pathway

ZnO NPs 30 nm (TEM) HepG2 cell 14–20 μg/mL for 12 h AST, ALT, Bax (increased) Bcl2 (decreased) LDH 
leakage; JNK, P38 activation

[108]

Apoptosis

ZnO NPs Less than 15 nm 
(TEM)

Sprague dawley 
albino rats

100, 200, 300 mg/kg b.w. per 
day for 14 d (oral) 

ALT, AST, ALP (increased); Bax, caspase-3 
(increased); Bcl2 (decreased); Modulation of 
JNK/p38MAPK & STAT-3 signalling pathways

[109]

Apoptosis

ZnO NPs 20-50 nm (TEM) HepG2 cells; 
sprague dawley rat

20 μg/mL for 24 h; 25 mg/kg 
b.w. for 7 d (i.p.)

Cell inactivation; Intracellular calcium overload; 
Mitochondrial damage

[110]

Oxidative stress

ALP: Alkaline phosphatase, ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, Bax: Bcl-2 associated X protein, Bcl2: B-cell lymphoma 2, 
CHOP: C/EBP Homologous Protein, CRP: C reactive protein, IgG: Immunoglobulin G, eIF2α: Eukaryotic initiation factor 2 α, GADD153: Growth arrest and 
DNA damage 153, Grp 78/94: Glucose regulated protein 78/94, IgG: Immunoglobulin G, IL-6: interleukin 6, JNK: Jun N-terminal kinase, LDH: Lactate 
dehydrogenase, MAPK: Mitogen activated protein kinase, NO: Nitric oxide, p38: Protein kinase, pdi-3: Protein disulfide isomerase -3, PERK: Protein kinase 
RNA like ER kinase, STAT-3: Signal transducer and activator of transcription 3, TNF-α: Tumor necrosis factor α, IL-6: Interleukin 6; xbp-1: X box binding 
protein-1.

intracellular calcium load along with weaker antioxidant level, and severe histopathological distortions. The expression 
pattern of differentially expressed genes and their transcripts are more for ZnONPs[110]. A recent study confirms the 
cytotoxic and genotoxic potentiality of ZnONPs in HepG2 cells in 2D and 3D culture after 24 h of exposure[111]. In dogs 
overused ZnONPs enhanced zinc accumulation in the liver with elevated serum liver indexes along with ROS generation 
and altered mitochondrial function. Strikingly ZnONPs attenuated apoptosis via the cytochrome c pathway instead, it 
induced autophagy through activating the mTOR/ATG5 pathway. Also involved in the disruption of the intestinal 
microbiome and 81 liver metabolites[112]. ZnO NPs induce crosstalk between protective autophagy and pyroptosis in 
hepatocytes. TFEB-mediated regulation influences ZnO NP-induced pyroptosis, with TFEB knockout exacerbating and 
overexpression alleviating it. TRAF-6 is identified in TFEB-mediated global regulation[113]. TFEB-regulated autophagy 
and lysosome prevent ZnO NPs-induced hepatocyte pyroptosis, providing insights for risk assessment and therapeutic 
strategies[113]. ZnO NPs also widely used in various applications, induce oxidative stress, leading to NLRP3-ASC-
Caspase-1 complex assembly and pyroptosis in rat liver and HepG2 cells[114]. Inhibiting oxidative stress protects against 
ZnONPs-induced pyroptosis in hepatocytes, revealing a novel mechanism and potential clinical treatment strategies[114].

Titanium dioxide nanoparticles: Several major effects and molecular mechanisms underlying hepatotoxicity due to TiO2

NP exposure have been reported in both in vitro and in vivo studies. Titanium dioxide exists in different commercially 
available forms. The natural one is an agglomerated, rod-shaped rutile form and the other is a glomerated metastable 
form, the anatase. Chen et al[115], in a study proved that both forms can significantly activate inflammatory signaling 
pathways like mitogen-activated protein kinase (MAPK) and NF-κB in HepG2 cells with reduced cell viability and 
ultrastructural alterations, though rutile form has more cytotoxic effect. In 80 CD-1 (ICR) mice, intragastric administration 
of TiO2NPs resulted in increased expressions of Toll-like receptors (TLR2 &TLR4) and inflammation-related genes (IKK1, 
IKK2, NF-kB, NF-kBP52, NF-kBP65, TNF-α, NIK) with decreased expressions of IkB and Il-2 indicating TLRs/NIK/IkB 
kinase/NF-kB/TNF-α signaling pathway mediated inflammation in liver. At higher doses significant changes in liver 
coefficient, biochemical parameters (ALT, AST, ALP, LDH, pseudocholinesterase, leucine acid peptide) along with 
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Table 6 Effects and molecular mechanisms underlying TiO2NPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

TiO2NPs (Anatase) 7 nm (XRD) 80 CD-1 (ICR) mice 5, 10, 50 mg/kg b.w. every 
other day for 60 d (i.g.)

SOD, CAT, GSH-Px, MT, HSP70, GST 
(downregulation); CYP1A (upregulation)

[117]

Oxidative stress, apoptosis

TiO2NPs (Anatase) 5 nm (XRD) CD-1 (ICR) mice 5, 10, 50, 100, 150 mg/kg 
b.w. daily for 14 d 
(abdominal injection)

Accumulated in liver DNA; Inserted in 
DNA base pairs; Binds to DNA 
nucleotides; Alter DNA secondary 
structure; Liver DNA cleavage at higher 
dose

[119]

Genotoxicity

TiO2NPs < 25 nm anatase; < 
100 nm rutile (SEM)

HepG2 cell 1, 10, 100 and 250 mg/mL 
incubated for 4, 24, 48 h

p21, mdm2, p53, gadd45α (increased 
expression); DNA strand break; DNA 
damage; ROS production

[120]

Genotoxicity

TiO2NPs (Anatase) 5 nm (XRD) 80 CD-1 (ICR) mice 5, 10, 50 mg/kg b.w. for 60 
d (i.g.)

TLR2, TLR4, IKK1, IKK2, NF-kB, NF-
kBP52, NF-kBP65, TNF-α, NIK (upregu-
lation); IkB, IL-2 (downregulation); ALT, 
AST, ALP, LDH, PCh, LAP (upregu-
lation)

[116]

Inflammation, apoptosis

TiO2NPs (Anatase 
& rutile)

Anatase –561.63 ± 
26.26 nm; Rutile – 
206.22 ± 2.18 nm 
(TEM)

HepG2 cell 5-320 μg/mL for 24 h ERK1/2, p38 (increased 
phosphorylation); TNFα (upregulated); 
A20 (downregulated); Activation of 
MAPK & NF-kB pathway

[115]

Inflammation

TiO2NPs; Rutile 
anatase; P25 
(anatase: rutile = 
75:25)

Rutile – 50 nm; 
Anatase – 50 nm; 
P25 – 21 nm (TEM)

Primary hepatocytes 
of Sprague Dawley 
rats

50 μg/mL, 72 h ROS (upregulated); Urea, albumin, 
MnSOD, MMP, Mfn 1, Opa 1 (downreg-
ulated)

[122]

Perturbation of mitochondrial dynamics, 
oxidative stress

TiO2NPs; Rutile 12-18 nm (TEM) BRL 3A cells; sprague 
dawley rats

0.1-100 μg/mL for 6 h; 0.5-
50 mg/kg BW intraperi-
toneal injection 24 h

Rapid G0/G1 to S transition, G2/M 
arrest; ALT, AST, ALP, LDH 
(upregulated)

[123]

Hepatocytes with oxidative stress show 
more cytotoxicity

TiO2NPs; Anatase 10 (TEM) B6C3F1 mice 50 mg/kg b.w. daily for 3 d 
(i.p.)

DNA strand break nucleotide oxidization; 
MT1H, MT1E (upregulation); Differential 
gene expression(increased)

[121]

Oxidative stress, Genotoxicity, 
metabolic imbalance

TiO2NPs; Anatase 19 (XRD) Wistar rat 100 mg/kg daily for 60 d 
(oral)

ALT, AST, ALP, LPO (increased); GSH, 
SOD, GPx, CAT (decreased); vacuol-
ization, Sinusoidal dilation, inflammatory 
cells infiltration

[124]

Oxidative stress

TiO2NPs; Anatase 10 nm (TEM) Albino rats 100 mg/kg daily ALT, AST, ALP, Bax, LPO (increased); 
GPx, SOD, GSH, Bcl-2, (decreased); 
hepatic apoptosis; Sinusoidal dilation, 
infiltration inflammatory cells, steatosis, 
hepatocellular necrosis

[125]

60 d (oral) Oxidative stress

TiO2NPs; anatase: 
Rutile (80: 20)

20 nm (TEM) Wistar rat 300 mg/kg daily for 2 wk 
(oral)

ALT, AST, ALP, LDH, TNFα, NF-Kβ, 
TOS, LPO (upregulated); SOD, CAT, GPx, 
TAC (downregulated)

[118]

Inflammation, Oxidative stress

2, 10, 50 mg/kg b.w. daily LPO, GPx, SOD, GSSG, IL-1α, IL-4 and TiO2NPs; Anatase 29 ± 9 nm (SEM) Sprague dawley rats [126,127]
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for 90 d (oral) TNFα (increased); GSH (decreased); 
Mitochondrial swelling increased gut 
microbiota altered glycerophospholipid, 
Phosphatidylcholines metabolism; 
Hepatotoxicity indirectly through gut 
liver axis

Oxidative stress, inflammation

A20: Alpha-induced protein-3; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; Bax: Bcl-2 associated X 
protein; Bcl2: B-cell lymphoma 2; CAT: Catalase; CYP1A: Cytochrome p450 1A; DNA: Deoxy ribonucleic acid; ERK1/2: Extracellular signal-regulated 
protein kinases 1 and 2; gadd45α: Growth arrest and DNA damage 45 alpha; GPx/GSH-Px: Glutathione peroxidase; GSH: Glutathione; GSSG: Glutathione 
disulfide; GST: Glutathione S transferase; HSP70: Heat shock protein 70; IkB: Inhibitor kappa B; IKK1,2: IκB kinase; IL-1α: Interleukin 1 alpha; IL-2,4: 
Interleukin-2,4; LAP: Leucine acid peptide; LDH: Lactate dehydrogenase; LPO: Lipid peroxidation; MAPK: Mitogen activated protein kinase; mdm2: 
Murine double minute 2; Mfn 1: Mitofusin 1; MMP: Mitochondrial membrane potential; MnSOD: Manganese superoxide dismutase; MT: Metallothionein; 
MTIE: Metallothionein 1E; MTIH: Metallothionein 1H; NF-kB: Nuclear factor kappa beta; NIK: NF-κB-inducible kinase; Opa 1: Optic atrophy 1; p21: 
Cyclin-dependent kinase inhibitor 1; p38: Puncture38; p53: Tumor suppressor protein p53; PCh: Pseudocholinesterase; ROS: Reactive oxygen species; SOD: 
Superoxide dismutase; TLR2/4: Toll like receptor 2/4; TNF-α: Tumor necrosis factor α; TOS: Total oxidant status.

Table 7 Effects and molecular mechanisms underlying MgONPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of administration Effects & mechanism Ref.
MgO - 3D Human Liver organoids male 

Sprauge Dawley rat
100 μg/mL incubated for 48 h. 40 
mg/kg daily for 4 wk (oral)

ATP synthesis (decreased); ROS & Super oxide 
production (increased); ALT, AST (increased)

[21]

Oxidative stress

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ATP: Adenosine triphosphate; ROS: Reactive oxygen species.

Table 8 Effects and molecular mechanisms underlying Al2O3NPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of administration Effects & mechanism Ref.
Al2O3 < 50 

nm
Developing chicken 
embryo, HepG2 cell 
culture model 

10, 20, 40 μg/egg via injection from 8th 
to 12th day of incubation on an 
alternate day basis, 05, 10, 20 μg/mL 
for 12 h

ROS & Super oxide production (increased); ALP, ALT, 
AST activity (increased); HO-1, NQO-1 level 
(increased); Cell viability (decreased); SOD, CAT, GPx, 
TBARS, TNF-α, Caspase-3 activity (decreased)

[128]

Oxidative stress and cytotoxicity

ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; HO-1: Heme oxygenase-1; NQO-1: NAD(P)H quinone 
oxidoreductase 1; SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase; TBARS: Thiobarbituric acid reactive substances; TNF-α: 
Tumor necrosis factor α; ROS: Reactive oxygen species.

Table 9 Effects and molecular mechanisms underlying Cr2O3NPs induced hepatonanotoxicity

NPs Size Tested 
model Dose & route of administration Effects & mechanism Ref.

Cr2O3-NPs 22.50 + 1.76 nm 
(TEM)

Wistar rats 50 mg/100 g bwt (LD), 200 mg/100 g bwt (HD); single 
dose for 1, 7, 14 d (oral)

ALT, AST, ALP, γGT, total bilirubin 
(increased)

[23]

ALP: Alanine phosphatase, ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, HD: High dose, LD: Low dose, γGT: Gamma 
glutamyltransferas.

mitochondrial swelling, apoptotic body formation, chromatin condensation, inflammatory cell infiltration suggests liver 
tissue injury caused by inflammation that in turn trigger activation of apoptosis[116]. The same group showed that TiO2

NPs insult leads to ROS accumulation, over-expression of cytochrome p450 1A, and suppressed expression of stress-
related genes (SOD, CAT, GSH-Px, MT, HSP70, GST), and NPs detoxifying/metabolizing genes[117]. Other investigation 
result shows that TiO2NP ingestion at higher doses for longer periods leads to Kupffer cells hypertrophy, hydropic 
degeneration and vacuolization in hepatocytes, necrosis around the central vein followed by edema, infiltration of inflam-
matory cells along reduced antioxidant enzymes. Elevated levels of liver enzymes, higher lipid peroxidation, and 
upregulated expressions of inflammatory mediators (TNFα and NF-Kβ) suggest hepatic damage due to oxidative stress 
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Table 10 Effects and molecular mechanisms underlying iron oxide NPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

Na-oleate coated 
Fe3O4

8 ± 3 nm (TEM) Wistar rat 0.0364, 0.364, & 3.64 mg/kg 
b.w. for 1 d, 1, 2, 4 wks (i.v.)

Temporary change in mitochondrial 
respiration; GPx, GST (increased); 
Lipidosis, mild necrosis; Enlarged 
sinusoid space

[133]

Oxidative stress

Polyethylene glycol – 
8000 coated Fe3O4

8.82 ± 0.70 nm 
(TEM)

Wistar rat 10 mg/kg b.w. single dose, 
once in a week, twice in a 
week for 30 d (i.v.)

ALT, AST, ALP (slightly increased); 
AST, LPO, SOD, GPx, Neutrophil count 
(increased); No significant tissue 
damage

[135]

Fe3O4 20 nm (TEM) Wistar rat 40 mg/kg b.w. for 14 d (i.t.) Congestion of sinusoid; Hepatocytic 
ballooning; Mononuclear cell infilt-
ration; Tissue damage

[132]

Inflammation

Fe3O4 41.3 ± 5.9 nm for 
USPIO, 112.6 ± 
38.4 nm for SPIO 
(DLS)

L-02 cells 2.5, 5, 10, and 20 μg/mL) for 
12 h

Cell survivility (decreased); Elevated 
expression of Genes related to acute 
phase inflammation, ER stress. HSP70, 
IL-6, PERK, ATF4, ER Ca++ (increased); 
USPIO show higher toxicity than SPIO

[136]

ER stress, inflammation

Fe3O4 10 nm (TEM) Hepatocytes of Lewis 
rat in sandwich 
culture model

100, 200, 400 μg/mL, single 
dose & cumulative dose; 24 
h to 7 d

Cell survivility (decreased); ROS 
(increased); Albumin & urea synthsis 
(decreased)

[134]

Oxidative stress

Fe3O4 29.6 ± 12.2 nm 
(TEM)

Albino wistar rat 30, 300, 1000 mg/kg b.w. for 
28 d (nano & bulk) (oral)

GSH, CAT (decreased); SOD, GR, GST, 
LPO (increased); GPx (unchanged); 
Congested central vein in higher dose

[130]

Oxidative stress

Fe2O3 30 nm (TEM) Wistar rat 100, 200 mg/kg single dose 
(oral)

ALT (increased) iron deposition in 
hepatocyte & Kupffer cells

[131]

Inflammation

Fe2O3 30 nm (TEM) L-02 cells; BALB/C 
mice

2.5, 7.5, and 12.5 lg/mL) for 
1, 3, 6 h; 20 mg/kg body 
weight for 24 h. (i.v.)

Cox2 (overexpression); COX-2 
interaction with IP3R-GRP75-VDAC1 
complex; Ca++ transfer increased; Bax, 
Cleaved Casp-3 (increased); Bcl2 
(decreased)

[137]

Apoptosis

ALP: Alanine phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; Atf4: Activating transcription factor 4; Bax: Bcl-2 associated 
X protein; Bcl2: B-cell lymphoma 2; Ca++: Calcium ion; CAT: Catalase; COX-2: Cyclooxygenase-2; ER: Endoplasmic reticulum; GPx: Glutathione 
peroxidase; GR: Glutathione reductase; GRP75: Glucose regulated protein 75; GSH: Glutathione; GST: Glutathione S-transferase; HD: High dose; HSP-70: 
Heat shock protein 70; IL-6: Interleukin-6; IP3R: Inositol 1,4,5 triphosphate receptor; LD: Low dose; LPO: Lipid peroxidation; PERK: Protein kinase RNA 
like ER kinase; ROS: Reactive oxygen species; SOD: Super oxide dismutase; SPIO: Superparamagnetic iron oxide; USPIO: Ultra-small superparamagnetic 
iron oxide; VDAC1: Voltage-dependent anion channel 1; γGT: Gamma glutamyl transferase.

and inflammation[118].
Different spectral analyses and gel electrophoresis results of in vivo experiments unveil that liver DNA is a prime target 

of TiO2NPs. In liver DNA, anatase form get accumulates either by inserting itself between base pairs or directly binding to 
3 oxygen or nitrogen atoms [Ti-O(N)=1.87A] and 2 phosphorous atoms (Ti-P=2.38A) of nucleotide, affecting the config-
uration of DNA secondary structure. DNA laddering in gel slab at a higher dose of 150 mg/kg can be corroborated with 
liver DNA cleavage by NPs[119]. In vitro study with HepG2 cells also exhibited oxidative stress-induced DNA damage 
for both rutile and anatase forms. Elevated expression level of p53 and subsequent upregulated expression pattern of 
downstream DNA damage responsive genes (p21, mdm2, gadd45α) confirms the TiO2NPs mediated genotoxicity in 
hepatocytes[120]. Gene expression analysis and genotoxicity assessment demonstrated similar results, that TiO2NPs 
promote oxidization of nucleotides which results in DNA strand break (DNA damage). Also disturbs the metabolic 
homeostasis of the liver through oxidative and stress-related impairment of glucose, lipid, and xenobiotic metabolism
[121].
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When primary hepatocytes were given exposure to rutile, anatase, and P25 (mixture of rutile & anatase) NPs, all three 
significantly exhibited hepatotoxicity. The Mitochondrial morphology and dynamics get compromised due to the 
downregulation of the fusion process, which leads to mitochondrial fragmentation in hepatocytes. Over production of 
ROS and subsequent loss of MnSOD enzyme activity and reduced MMP leads to oxidative stress that hampers the 
normal functionality of liver cells including biosynthesis of urea and albumin[122]. In a remarkable in vitro as well as in 
vivo experimentation Sha et al[123] click or tap here to enter text. Have proven that liver cells already in oxidative stress 
condition exhibit more susceptibility towards nano-TiO2 mediated cytotoxicity. In contrast to G0/G1 phase arrest under 
only NM exposure, BRL-3A cells with prior oxidative stress conditions exhibited very fast G0/G1 phase to S transition, 
G2/M arrest with elevated cell death ratios. Increased expression levels of liver marker enzymes (ALT, AST, ALP, LDH) 
under the same experimental regime in an in vivo study indicated liver damage with prominent histopathological 
perturbation. Micro-TiO2 didn’t show such effects both in cells and rat liver. Again, in different studies orally 
administered thymol and tiron were seen to ameliorate TiO2NPs mediated lipid peroxidation (LPO), oxidative stress, 
non-enzymatic and enzymatic alterations of antioxidant levels, augmentation of proapoptotic and downregulation of 
antiapoptotic genes along with biochemical and histopathological changes in liver tissue. Supporting hepatic injury by 
TiO2NPs is mediated by oxidative stress and apoptosis[124,125].

In a dose-dependent manner TiO2NPs treated rats show an increment in diversity and abundance of gut microbiota (
Firmicutes, Bacteroidetes, Tenericutes, Proteobacteria, etc.) that has been found to produce a significant quantity of lipopoly-
saccharides and increased number of Lactobacillus reuteri but not Romboutsia in feces. On the contrary, it produces 
mitochondrial swelling, and an imbalance in oxidation/antioxidation status with the generation of altered metabolites 
(Glutamate, glutamine, and glutathione) in connection to energy-related metabolic disorders. Therefore, it can be 
predicted from the results that the indirect pathway of the gut-liver axis may play an important role, in connecting gut 
microbiota and liver metabolism. Subsequent investigation confirms that the gut microbiota under oxidative stress led to 
lipid metabolism disorders (glycerophospholipid and phosphatidylcholines) and caused liver toxicity via the gut-liver 
axis[126,127].

Mg-nano nanoparticles: In a recent experiment, researchers have tried to verify the hepatotoxic potentiality of Mg-nano 
in combination with valproate (anticonvulsant drug) and PTZ (pentylenetetrazole- used to induce convulsion mouse 
model) using 3D liver organoid and rat model. In the in vitro model the prepared suspension carrying Mg-nano decreased 
the production of ATP and increased ROS generation and super oxide production while in vivo result showed a 
significant increase of ALT, AST in serum but without any change in albumin or globulin concentration, suggesting Mg-
nano as well as Valporate both can induce hepatotoxicity[21].

Aluminium oxide nanoparticles: Aluminum oxide nanoparticles (Al2O3-NPs) pose hepatotoxic effects on chicken 
embryos and cell cultures, inducing histological abnormalities, elevating tissue damage markers, causing oxidative stress, 
and impacting antioxidant enzymes[128]. Additionally, Al2O3-NPs affect red blood cells, liver metabolism, and stress 
response gene expression. The study reveals dose-dependent ROS generation, cytotoxic responses, and potentiating 
effects on TNF-α-induced apoptosis. Inhibition of p38 MAPK and JNK pathways modulates Al2O3-NPs-induced apoptosis 
in HepG2 cells, highlighting novel mechanisms and potential prevention strategies[128].

Chromium oxide nanoparticles: The investigated liver function biomarkers (ALT, AST, ALP, γgamma glutamyl 
transferase, total bilirubin levels) get elevated in a dose and exposure time-dependent fashion in rats after orally 
consuming Cr2O3-NPs. Routine histological examination clearly showed moderate to severe architectural damage 
including liver cell degeneration, Kupffer cell hyperplasia, parenchymal distortions, dilated central vein, and hemorrhage 
for both low and high doses, indicating the role of chromium oxide-NPs in liver toxicity[23].

Iron oxides nanoparticles: The bioavailability of nano iron oxide was found to be greater compared to bulk in different 
organs, including the liver[24,129]. Similarly, nano magnetite (Fe3O4) showed higher bioaccumulation, oxidative stress, 
and liver tissue damage than its bulk counterpart in another experiment also[130]. Orally administered nano maghemite 
(Fe2O3) was found deposited in hepatocytes and kupffer cells, resulting in very little perturbation of biochemical 
parameters with minimum effects on the liver[131]. Histopathological study revealed infiltration of mononuclear cells, 
ballooning, and hepatic damage with congestion in sinusoids but surprisingly with a decreased level of ALT during the 
investigation of concurrent effects of aerobic exercise and IONPs in liver enzymes of the treated subject[132]. In the rat 
model administration of coated Fe3O4 caused mild liver tissue injury with an altered antioxidant enzyme profile, 
suggesting oxidative stress-related response[133]. Similarly, increased ROS production and decreased cell viability with 
hampered albumin and urea synthesis in a dose-dependent manner was evident from another study with primary 
hepatocytes[134]. On dose interval treatment with PEG-8000 coated ultra-small superparamagnetic iron oxide 
nanoparticles, have shown temporary alterations in the liver biomarkers and hematological parameters, with lipid 
peroxidation[135]. In a separate experiment, USPIO was found to exhibit more toxic effects on liver tissue than SPIO. In 
USPIO treated L-02 cells, upregulated expressions of IL-1B, IL-6, IL-18, TNFSF12, TNFRSF12, SAA1, SAA2, JAK1, 
STAT5B, and CXCL14 genes with increased secretion of Il-6 and altered ER structure due to ER stress supports the 
occurrence of ER stress-mediated acute-phase inflammatory response that leads to cytotoxicity. Application of ER stress 
blocker or ATF4 siRNA attenuated the USPIOs effects supporting the involvement of PERK/ATF4 pathway[136]. MAMs 
[Mitochondria-associated endoplasmic reticulum (ER) membranes], a dynamic microdomain made up of proteins that 
maintain crosstalk between ER and mitochondria, play a crucial role in Ca++ ion and metabolite transfer between two 
organelles and cellular homeostasis. Both in vitro and in vivo results suggest SPIO-Nps (iron oxide) accumulation in 
hepatocytes triggers the overexpression followed by interaction of COX-2 with IP3R-GRP75-VDAC1 complex (inositol 
1,4,5 triphosphate receptor, glucose-regulated protein 75, voltage-dependent anion channel 1), the fraction of MAMs that 
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facilitates Ca++ transfer. Thereby resulted in profuse Ca++ transfer from ER to mitochondria, producing Ca++ overload in 
mitochondria that sparks apoptosis in hepatocytes[137].

Orally administered nano-iron oxide, commonly used in food, disrupts the small intestinal barrier, leading to hepatic 
lipid metabolism disorders through the gut–liver axis. This disruption causes hepatic damage and iron deposition, 
impacting lipid homeostasis with decreased phosphatidylcholine and phosphatidylethanolamine and increased trigly-
ceride levels. The study highlights the subchronic toxicity of nano-iron oxide and emphasizes the pivotal role of the gut-
liver axis in its hepatotoxicity[138]. Fe2O3 nanoparticles (E172 food additive) exhibit no evident toxicity in body weight, 
histopathology, or oxidative stress in animal experiments. However, a sensitiveLC–MS/MS-based lipidomic study 
reveals significant alterations in hepatic glycerophospholipid metabolism, including decreased triacylglycerol and 
increased phosphatidylcholine. This study enhances understanding of the subacute effects of Fe2O3 NPs beyond conven-
tional toxicology assessments[139].

Graphene oxide nanoparticles
Because of its special physico-chemical characteristics, graphene oxides are easily produced and tailored to order. They 
have a wide range of uses in the fields of electronics, nanomedicine, textiles, water purification, nanocomposite, and 
catalysis[140-143]. Several investigations unveiled the subacute toxicity caused by GO in different organs including the 
liver[144,145]. Patlolla et al[146] showed that in an SD rat model, GO-induced liver inflammation was associated with 
lower levels of cholesterol, HDL, and LDL. A separate study with a similar model revealed oxidative stress in accordance 
with the enhanced ROS production, increased activity of AST/GPT, ALT/GOT, alkaline phosphatase, and lipid hydro 
peroxide with structural alterations in hepatocytes. Varied degrees of histopathological modifications (sinusoidal 
abnormality, inflammation around portal and central vein, hepatocytic vacuolation) with an elevated level of serum 
enzyme markers and alterations in MDA, CAT contents concerning oxidative stress indicate GO-induced hepatotoxicity 
in Wistar rat[147] GO induced mild early apoptosis and inhibited phase-I drug-metabolism enzymes (CYP3A4, CYP2C9) 
in upcyte® hepatocytes[148]. Notably, CYP3A4 impairment coincided with an acute-phase response activation. The study 
highlights the potential health consequences of drug detoxification[148]. Follow Table 11 for a comprehensive account.

Carbon nanotubes nanoparticles
Carbon nanotubes are of two types, single-walled (SWCNTs) with one layer and multi-walled (MWCNTs) with multiple 
layers. When acid-oxidized MWCNTs (O-MWCNTs) and Tween-80-dispersed MWCNTs (T-MWCNTs) were 
administered intravenously to mice bodies both types showed inflammatory responses and oxidative stress-mediated 
liver toxicity. Compared to O-MWCNTs (with carboxyl group), T-MWCNTs (without carboxyl group) exhibited greater 
effects suggesting hepatotoxicity might be dependent on modification of carboxyl group. Whole genome-wise expression 
array revealed, upregulated expression of genes related to TNF-α, NF-κB signaling pathway, NK cell-mediated 
cytotoxicity, biosynthesis of cholesterol, metabolism by cytochrome P450, GPCRs (G protein-coupled receptors) were 
recorded for both the treatments[149].

NMR-based metabonomic study unveiled disruption of important metabolic pathways in rat model receiving 
SWCNTs. Decreased alanine but increased lactate concentration in plasma indicates impairment of amino acid 
metabolism. Similarly, decreased level of lipoproteins, and lipids together with the rise in choline, and phosphocholine in 
serum and liver extract support the disruption of membrane fluidity due to lipid peroxidation. All these strongly support 
nanotubes-induced hepatic injury through the modulation of energy, amino acid, and lipid metabolism[150].

Several investigations have revealed that MWCNT resulted in increased ROS production (H2O2), and LPO with a 
compromised antioxidant defense system (SOD, GPx, GSH, GST), suggesting oxidative stress-mediated hepatotoxicity[4,
151,152]. In a series of experiments, Patlolla et al[153] and Patlolla et al[154] had shown that in a dose-dependent manner 
both carboxylated functionalized carbon nanotubes (SWCNT and MWCNT) exposure to mice resulted in ROS-mediated 
oxidative stress in association to increased liver biochemical markers and tissue damage.

Again, MWCNT exposure was found to stimulate pro-inflammatory cytokines (IL-6, IL-1B, COX-1, TNF-α), that serve 
as an inflammatory mediator to elicit inflammatory responses in the liver[4,151,152]. In an in vivo toxicity study, adminis-
tration of both P- MWCNT (PEGylated) and NP- MWCNT (non-PEGylated) exhibited induction of hepatic inflammation 
through TNF-α and NF-κB signaling pathway without any oxidative damage to the liver tissue, though NP- MWCNT 
shows slightly higher toxicity[155]. Orally administered aqueous extract of Cinnamomum burmannii was reported to 
protect the liver against MWCNT assault by downregulating pro-inflammatory cytokine production and ameliorating the 
antioxidant system. Suggesting nanotubes triggered liver toxicity is due to oxidative stress and inflammation[4].

Histopathological examinations revealed that MWCNT insult produces clear ultrastructural perturbations including 
cellular swelling, hydropic degeneration, sinusoidal leukocytosis, sinusoidal space enlargement, vacuolar degeneration, 
inflammatory cell infiltration associated with focal hepatic and focal perivascular hepatic necrosis, spot necrosis, 
mitochondrial destruction, congested central vein, macrophage injury even blood coagulation[4,155,156].

Cd-MT (accumulated cadmium-metallothionein) mice when treated with oxidized MWCNTs have shown some 
striking results. Different doses of MWCNT exposure, alone promoted the release of free Cd++ from Cd-MT, a portion 
freely available in circulation for elimination while the other portion adsorbed by MWCNT, stayed together in the tissue. 
Also, co-exposure alleviated hepatotoxicity compared to single exposure[157]. But co-administration of a higher dose of 
MWCNTs with PbAc in NAFLD (non-alcoholic fatty liver disease) mice resulted in severe liver damage compared to 
lower combined or single dose (lower or higher) of MWCNTs or PbAc. Remarkable reduction in body weight, liver 
function, and augmentation of nonalcoholic steatohepatitis (steatosis, lobular inflammation) phenotype was noticed. 
MWCNTs alone or in combination were found to induce collagen deposition and lipidosis, which leads to hepatic 
fibrosis. Primary hepatocytes isolated from co-exposed NAFLD mice exhibited a higher rate of apoptosis followed by 
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Table 11 Effects and molecular mechanisms underlying GONPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of administration Effects & mechanism Ref.
GO 100-500 nm (TEM) Sprague dawley rats 2.5, 5, and 10 mg/kg/d for 7 d (i.v.) Liver inflammation; Cholesterol, HDL, 

LDL (decreased)
[144]

GO 40 nm (TEM) Sprague Dawley rats 10, 20 and 40 mg/Kg b.w. once for 5 
d, (oral)

ROS, AST, ALT, LHP (increased) [146]

GO 0.8-2 nm (TEM) Wistar rats 0.4/2/10 mg/kg b.w. AST, ALP, ALT, MDA (increased); CAT 
(decreased)

[147]

ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; CAT: Catalase; HDL: High density lipoprotein; LDL: Low 
density lipoprotein; LHP: Lipid hydro peroxide; MDA: Malondialdehyde; ROS: Reactive oxygen species.

oxidative stress and inflammation. A significant decrease in expression patterns of p-AMPKα and PPARγ at combined 
low doses but reverse expression pattern in the presence of AMP activated protein kinase (AMPK) activators suggests 
inhibition of AMPK/PPARγ pathway (adenosine 5‘-monophosphate activated protein kinase/peroxisome proliferator-
activated receptors γ) may be the reason behind hepatotoxicity[152]. Follow Table 12 for a comprehensive account.

Copper sulfide/cadmium sulfide nanoparticles
In a study using biomimetic synthesis and ion exchange strategy CuS/CdS nanocomposites were synthesized and tested 
for hepatotoxicity in liver cells and mice models. In vitro, study results unveiled that CuS/CdS nanocomposites cause 
oxidative stress-mediated apoptosis in liver cells which can be correlated with the perturbated intracellular antioxidant 
defense system in hepatocytes (SOD & GSH) and excessive accumulation of oxidative products (ROS, GSSG, MDA) that 
resulted into oxidative stress-mediated apoptosis in both hepatoma cells (BEL7402) and normal liver cells (L-02). Though 
the first one was more responsive than the latter one. Intravenous injection of nanocomposites to Balb/c mice has shown 
time-dependent accumulation of Cd2+ and Cu2+ in the liver, spleen, and kidney. Compared to Cu2+, the liver and kidney 
retained a significant amount of Cd2+ which the physiological system was unable to remove[158]. Compared to CdS 
microparticles CdNPs exhibited more toxic effects in rat liver. Greater bioaccumulation of CdNPs leads to the overpro-
duction of metallothionein and ligand formation that has increased its hydrophilicity, facilitating penetration through 
hepatocyte membrane and such interactions between membrane and NPs further facilitated ROS generation (H2O2, NO) 
and oxidative stress (lipid peroxidation), disrupting membrane integrity. Biochemical analysis showed increased ALT, 
AST, and ALP in serum. Ultrastructural study exhibited cytoplasmic degeneration, organellar proliferation (microsome, 
ER, peroxisome, mitochondria), and extensive parenchymal degeneration suggesting hepatotoxicity[159].

The hepatic bile salt export pump (BSEP) is crucial for secreting bile salts from hepatocytes to bile and the hepatic 
MRP2 transporter contributes to bile flow, detoxification, and chemoprotection maintaining a healthy liver. Lowered 
expression of BSEP mRNA and protein followed by diminished activity of BSEP was observed in the CuSNPs treated 
group while MRP2 function remain unaltered. Hepatocytes also showed spheroid injury with altered ROS and 
mitochondrial membrane potential[160]. In a separate experiment, different-sized (LNPs - 17.8 nm and SNPs -2.8 nm) 
copper sulfide nanoparticles (Cu2−xS NPs), biomineralized with Bovine Serum Albumin were administered in SD rats 
through tail vein to assess safety and liver toxicity. Both the particles were found to intervein important biochemical 
pathways including, lipid metabolism, cholesterol/bile acid metabolism, copper ion transport/metabolism, inflammatory 
and drug metabolism-cytochrome P450 pathway. SNPs are discharged through feces, 7 and 14 d after single adminis-
tration causing manageable liver toxicity, so it could be a promising nano agent. On the contrary LNPs with more 
retention power in Kupffer cells, were found to be involved in prolonged and delayed liver toxicity[161]. Follow Table 13 
for a comprehensive account.

Cobalt nanoparticle
The human fetal liver cell line L02 demonstrated dose- and time-dependent cytotoxicity following exposure to varying 
doses of Nano-Co for 12 or 24 h. It has been predicted that cobalt nanoparticles reach hepatocyte intracellular regions 
through both endocytosis-driven and endocytosis-free pathways. This led to the generation of ROS and mtROS 
(mitochondrial reactive oxygen species), which in turn caused oxidative stress damage. Availability of IL-1β and IL-18 in 
the extracellular space suggests mtROS-mediated activation of NLRP3 (NOD-like receptor protein 3) inflammosome 
response, resulting in the upregulation of caspase-1 p20, IL-1β, and IL-18. Thus Nano-Co induced modulation of ROS/
NLRP3 pathway was found to be involved in hepatotoxicity[162]. Follow Table 14 for a comprehensive account.

Nanoclay particles
In mice, intra-veinous administration of nanoclay resulted in acute hepatotoxicity. Elevated level of ALT and AST in 
serum with routine histological study results indicates toxic effects for higher doses (10 or 20 mg/kg). When co-
administered with chemical (carbon tetra chloride, paraquat) or drug (cisplatin) exhibited synergistic increment in liver 
biomarkers compared to their individual effects[163]. Follow Table 15 for a comprehensive account.
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Table 12 Effects and molecular mechanisms underlying carbon nanotube induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

MWCNTs O-MWCNT; T-
MWCNT; Length 356 
± 185 nm

Kunming mice 10 and 60 mg/kg b.w. (Iv) 
sacrificed at 15 & 60 d 

GSH, SOD (decreased at 15 days); AST, T-
Bil (increased); Spotty necrosis, Infiltration 
of inflammatory cells in portal region, 
mitochondrial swelling and lysis; Cyp2B19 
(upregulated); Cyp2C50, Gsta2 (downreg-
ulated)

[149]

Oxidative stress, Inflammation

PEGylated; 
MWCNT

P- MWCNT; NP- 
MWCNT; Length of 
less than 1 μm; 
Diameter of 10-20 nm

Kunming mice 10 and 60 mg/kg b.w. (Iv) 
sacrificed at 15 & 60 d

Blackish discoloration of the liver 
(MWCNTs accumulation); AST, Bag4, 
Gab1 genes (increased); Infiltration inflam-
matory cells, cellular necrosis, focal 
necrosis; Mitochondrial swelling/lysis; 
NP- MWCNT shows more toxicity than P- 
MWCNT

[155]

Inflammation

Carboxylated 
functionalized 
SWCNT

lengths of 15–20 μm; 
Diameter of 15–30 nm

Swiss webster 
mice

0.25, 0.5 & 0.75 mg/kg b.w. per 
day for 5 d (Ip)

ROS, LHP, ALT, AST, ALP, (increased); 
Histological alterations

[153]

Oxidative stress

Carboxylated 
functionalized; 
MWCNTs

lengths of 15–20 μm; 
Diameter of 15–30 nm

Swiss webster 
mice

0.25, 0.5 & 0.75 mg/kg b.w. per 
day for 5 d (Ip)

ROS, LHP, ALT, AST, ALP, (increased); 
Histological alterations

[154]

Oxidative stress

MWCNTs Length 5-50 μm; 
Diameter 20-30 nm 
(SEM)

Swiss albino mice 10 and 60 mg/kg b.w. (oral) 
sacrificed at 7, 14, 21, 28 d

SOD, CAT activity (decreased); 
Macrophage injury, cellular swelling, 
unspecific inflammation, spot necrosis, 
blood coagulation. The sinusoid and 
hepaticvenule diameter increased by the 
high dose

[156]

Oxidative stress

SWCNTs Length several μm; 
Diameter 0.8-1.2 nm 
(TEM)

Wistar rat 7.5 (low), 15 (medium), and 22.5 
(high) mg/kg b. w. Intrat-
racheal instillation once for 15 d

ALB, ALP, TP, TC (decreased at high 
conc.); Focal necrosis, inflammatory cell 
infiltration, Cellular swelling at 
centrilobular part, membrane fluidity 
destruction, impaired amino acid & lipid 
metabolism

[150]

Metabolic disruption, Hepatotoxicity

Oxidised MWCNTs Length 1-2 μm; 
Diameter 10-30 nm 
(TEM)

Kunming mice 
(Cd-MT 
accumulated 
mice)

500 μg/mouse for 4 h ALT, AST, TBil, BUN (increased); Released 
Cd++ from Cd-MT; Adsorb a part of free 
Cd++

[157]

Coexpossure ameliorated hepatotoxicity

Carboxylated 
MWCNTs

Length 12 μm; 
Diameter 11.5 nm 
(TEM)

Wistar rat 0.25, 0.50, 0.75 and 1.0 mg/kg 
b.w. for 5 consecutive days (Ip)

ALT, AST, ALP, GGT (increased); LPO, 
H2O2, CAT, GPx, activity (increased); SOD, 
GST (decreased); IL-6, IL-1β, COX-1, iNOS, 
TNF-α (increased); micronucleated 
polychromatic erythrocytes (MNPCE)

[151]

Oxidative stress, Inflammation

MWCNTs Polycrystalline; 
Length 600-700 nm; 
Size 650 nm

Albino rat 1 g/kg b. w. (oral) 4 wk LPO, H2O2, TT, CATactivity (increased); 
SOD, GSH, GPx, GST (decreased); IL-6, IL-
1β, COX-1, TNF-α (increased); hydropic 
degeneration focal hepatic & perivascular 
hepatic necrosis associated with inflam-
matory cells, infiltration, sinusoidal 
leukocytosis, vacuolar degeneration, 
congestion of central vein

[4]

Oxidative stress, Inflammation

MWCNT; LD-10 mg/kg b.w. 
HD-30 mg/kg b.w. PbAc LD-
150 mg/kg b.w. HD-300 mg/kg 

Death at high dose on 5th day. ALT, AST, 
ALP (decreased); Nonalcoholic steatohep-
atitis lobular inflammation, hepatic 

Carboxylated 
MWCNTs

diameter: 5–15 nm, 
length: 0.5-2 μm 
(TEM)

C57BL/6J mice 
(NAFLD)

[152]
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b.w. MWCNT+ PbAc, LD-10 
mg/kg +150 mg/kg HD-30 
mg/kg +300 mg/kg (Intragast-
rically) daily for 80 d

fibrosis, steatosis, apoptotic induction in 
primary hepatocytes of NAFLD mice; 
SOD, GST, GSH (decreased); H2O2, GPx, 
MDA, LPO (increased); Lipid 
peroxidation; IL-6, IL-1β and TNF-α 
(inflammatory cytokines) inhibiting 
AMPK/PPARγ pathway

Oxidative stress, Inflammation

ALB: Albumin; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AMPK: AMP activated protein kinase; AST: Aspartate aminotransferase; Bag4: 
BAG cochaperone 4; BUN: Blood urea nitrogen; CAT: Catalase; COX-1,2: Cyclooxygenase-1,2; Cyp2B19: Cytochrome P4502B19; Cyp2C50: Cytochrome 
P4502C50; Gab1: GRB2 associated binding protein 1; GGT: Gamma glutamyl transferase; GPx: Glutathione peroxidase; GSH: Glutathione; Gsta2: 
Glutathione S-transferase, alpha2; GST: Glutathione-S transferase; H2O2: Hydrogen peroxide; IL-1β: Interleukin-1beta; IL-6: Interleukin-6; iNOS: Inducible 
nitric oxide synthase; LHP: Lipid hydroperoxide; LPO: Lipid peroxidation; MDA: Malondialdehyde; NAFLD: Non-alcoholic fatty liver disease; O-
MWCNT-acid: Oxidized multi-walled CNTs; PPARγ: Peroxisome proliferator-activated receptor-γ; ROS: Reactive oxygen species; SOD: Superoxide 
dismutase; TBil: Total bilirubin; TC: Total cholesterol; T-MWCNT: Tween-80-dispersed multi-walled CNTs; TNF-α: Tumor necrosis factor alpha; TP: Total 
protein; TT: Total thiol.

Table 13 Effects and molecular mechanisms underlying CuS/CdS-NPs induced hepatonanotoxicit

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

CdS NPs 5-9 nm 
(TEM)

Wistar rat 10 mg/kg alternate 
days for 45 d

Hepatosomatic index (decreased); ALT, AST, ALP, LPO, H2O2, NO 
(increased); GSH (depletion); Cytoplasmic 
degeneration/coagulation, sinusoidal inflammation, parenchymal 
degeneratin, mitochondria, peroxisome, microsomes increased in 
number

[159]

Oxidative stress

CuS/CdS 8.7 nm hepatoma cells 
BEL7402 and L-02 
normal liver cells; 
Balb/c mice

4 mg/kg, i,v 
injection

SOD, GSH (down regulation); ROS, GSSG, MDA (up regulation) [158]

Oxidative stress

Cu2-xS 17.8 nm 
(LNPs); 2.8 
nm (SNPs)

Sprague Dawley 
rats

5 mg/kg through 
tail vein single dose

ALT, AST, TBA, LDH (increased) ALB (decreased) [161]

ALB: Albumin, ALP: Alkaline phosphatase, ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, GSH: Glutathione, GSSG: Glutathione 
disulfid, H2O2: Hydrogen peroxide, LDH: Lactate dehydrogenase, LPO: Lipid peroxidation, MDA: Malondialdehyde, NO: Nitric oxide, ROS: Reactive 
oxygen species, SOD: Superoxide dismutase, TBA: Total bile acid.

Table 14 Effects and molecular mechanisms underlying cobalt NPs induced hepatonanotoxicity

NPs Size Tested model Dose & route of administration Effects & mechanism Ref.
Nano-Co 10-40 nm Normal human liver L02 cells 2.5, 5, 7.5, 10, 20, and 40 μg/mL) for 12 h or 24 h Modulation of ROS/NLRP3 pathway [162]

NLRP3: NOD-like receptor protein 3; ROS: Reactive oxygen species.

Nanocellulose modified with oxalate ester
Structural alteration of nanocellulose (CNS) may increase its application but such modification can lead to toxicity. Short-
term exposure of Wistar rat to chemically modified CNS (NCD), mainly higher dose showed an elevated level of ALT, 
and AST in serum, with increased myeloperoxidase (MPO) but decreased CAT, and glutathione peroxidase (GPx) 
activities, indicating disruption in ROS balance. Further over-expressions of iNOS and Bax in treated groups compared to 
control suggests oxidative stress-mediated inflammation and induction of apoptosis in hepatocytes[29].

Polystyrene nanoparticles
Polystyrene nanoparticles (PS NP) owe their origin to the degradation of microplastics. In aged -PS NPs (aPS) the oxygen-
containing functional groups get increased on its surface. In a recent investigation, comparative toxicity of PS NPs and 
aPS NPs was done to evaluate their effects on the liver after short-term exposure. Metabolomic, biochemical, and 
histopathological results reveal that both types of NPs can affect glucose and lipid metabolism through modulating 
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Table 15 Effects and molecular mechanisms underlying nanoclay, NCD, polystyrene, chytosan induced hepatonanotoxicity

NPs Size Tested 
model

Dose & route of 
administration Effects & mechanism Ref.

Nano-Clay 57.8 ± 12.3 nm 
& 648.3 ± 
232.2 nm

BALB/C 
mice

1, 5, 10, 20 mg/kg b.w. 
(Iv) 24 h; Co-administered 
with Ccl4, paraquat, 
cisplatin

ALT, AST (increased) [163]

NCD (modified 
nanocellulose with 
oxalate esters)

100 nm (SEM) Wistar rat 50 & 100 mg/kg b.w. 
(oral) for 7 d

ALT, AST (increased); CAT, GPx activity (decreased); MPO 
activity (increased); iNOS, Bax (increased); dialated sinusoidal 
space, vacuolated hepatocytes, cellular infiltration

[29]

Oxidative stress

Polystyrene PS NPs 158.8 
± 1.3 nm; aPS 
NPs 117.0 ± 
1.8 nm (SEM)

ICR mice 50 mg/kg/d (oral) for 7 d Glucose, HDL-C, TG, TC (increased in blood); LDL-C 
(decreased in blood); Activation of PI3K/AKT/GLUT4 & 
SREBP-1/PPARγ/ATGL signaling pathways; TG 
decomposition; Lipid accumulation (increased); Nuclear 
pyknosis, blurred intercellular space, central hepatic vein 
congestion, hepatic ballooning; Compared to PS NPs, aPS NPs 
showed higher toxicity

[28]

Disruption of glycolipid metabolism

Chitosan (CsNPs) 18 ± 1 nm 
(DLS)

BHAL cell ≥ 0.5% w/v for 4 h Readily internalized; Disrupt membrane integrity; ALT 
leakage; CYP3A4 enzyme activity (increased); necrotic or 
autophagic cell death

[27]

ALT: Alanine aminotransferase, aPS: UV aging Polystyrene, AST: Aspartate aminotransferase, ATGL: Adipose triglyceride lipase, Bax: Bcl-2 associated X 
protein, CAT: Catalase, CYP3A4: Cytochrome P4503A4, GLUT4: Glucose transporter 4, GPx: Glutathione peroxidase, HDL-C: High-density lipoprotein, 
iNOS: Inducible nitric oxide synthase, LDL-C: Low-density lipoprotein, MPO: Myeloperoxidase, NLRP3: NOD-like receptor protein 3, p-AKT: 
Phosphoprotein kinase B, PI3K: Phosphatidylinositol 3-kinase, PPARγ: Peroxisome proliferator-activated receptor-γ, PS: Polystyrene, ROS: Reactive 
oxygen species, SREBP-1: Sterol regulatory element binding protein-1, TC: Total cholesterol, TG: Triglyceride.

PI3K/AKT/GLUT4 and SREBP-1/PPARγ/ATGL signaling pathways respectively. Increased glucose but decreased 
lipoprotein concentration in serum indicates NPs mediated glycolipid metabolism disruption that provokes the exposed 
mice to self-regulate various lipoprotein levels in serum. Pyknotic nucleus, congested central vein, unclear sinusoids. 
vacuolation, hepatocyte ballooning suggests polystyrene NPs mediated liver toxicity[28].

Chitosan nanoparticles
Chitosan molecules being considered biocompatible have been tested for liver toxicity. Compared to the chitosan 
molecule, CsNPs showed higher cellular uptake though having poor cell adhesiveness. Availability of more ALT in the 
extracellular space of BHAL cells after 4 h of exposure indicates loss of membrane integrity. In a concentration-dependent 
manner CYP3A4 activity was seen to increase suggesting activation of defence mechanism for clearance of CsNPs. Also, it 
caused significant damage to the nucleus and cytoplasm, indicating necrotic cell death of hepatocytes[27].

Hydroxyapatite nanoparticles
Hydroxyapatite NPs (HANP) showed antitumor activity in HepG2 cells within a range of 20-80nm particle size. Its 
cellular uptake and nuclear localization followed by efficacy was found to diminish with increasing particle size. Treated 
cells exhibited caspase-3, and caspase-9 activation with increased proapoptotic markers (Bax, Bid) and with a concomitant 
decrease in Bcl-2 and cytochrome c release from mitochondria to the cytoplasm, confirmed HAPN-mediated activation of 
mitochondrial-dependent apoptotic pathway[164]. A similar result was documented in another in vitro experiment, 
where incubation of buffalo rat liver (BRL) cells with 80 nm HANPs at 200 μg/mL, exhibited diminished cell viability, 
LDH leakage, induced apoptosis, and necrosis, and MAPK pathway-mediated cytotoxicity. In vivo, study results showed 
infiltration of inflammatory cells near the portal area, increased WBC count, ALT, AST, and TNF-α in serum of treated 
rats with increased levels of H2O2, MDA suggesting HANPs induced oxidative stress-related liver injury[165]. Follow 
Table 16 for a comprehensive account.

Quantum dots
Mice with both acute and chronic exposure to cadmium selenium (CdSe) QDs showed predominant liver accumulation. 
Enlarged central vein and disordered hepatic cords were observed for chronic exposure only. In contrast the in vitro study 
unveiled that, Hepa 1-6 cells (murine liver cells) became condensed and decreased in size while J774A.1 cell (macrophage 
-substitute for Kupffer cell) became condensed and round. Beta-mercaptoethanol (β-ME) pretreatment was found to 
attenuate the QDs-induced increase of MDA level, suggesting QDs-induced oxidative stress in the liver involves the 
production of free radicals with compromised ROS scavengers (GSH-Px) that have provoked cytotoxicity in hepatocytes 
and macrophages, potentiating impairment of cellular differentiation without causing any death[166]. Similarly, 
perturbated redox homeostasis in mice treated with Cd/Se/Te-based quantum dot 705 has been documented. Increased 
levels of copper, zinc, and selenium with trace elements and their corresponding transporters (ZIP8, ZIP14, and CTR-1), 
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Table 16 Effects and molecular mechanisms underlying hydroxyapatite nanoparticles induced hepatonanotoxicity

NPs Size Tested model Dose & route of 
administration Effects & mechanism Ref.

Hydroxyapatite 
nanoparticles

50 nm 
(XRD)

HepG2 cells; L-02 
cells

100 μg/mL for 24, 48 h Caspase-3, 9 (activated); Bax, Bid (upregulated); Bcl-2 
(downregulated); Cytosolic appearance of cytochrome c

[164]

Apoptosis

Hydroxyapatite 
nanoparticles

80 nm 
(TEM)

BRL cells; 
Sprague–Dawley 
rat

25, 50, 100, 200, 400 and 800 
μg/mL for 1 h; 50 mg/kg (Iv) 
single dose, sacrificed at 48 h

Decreased cell viability; Increased LDH leakage; 
Induced apoptosis & necrosis; MAPK signaling pathway 
activation; WBC count, ALT, AST, TNF-α, H2O2, MDA 
(increased); Infiltration of inflammatory cells near portal 
area

[165]

Oxidative stress, inflammation, apoptosis, necrosis

ALT: Alkaline phosphatase; AST: Aspartate aminotransferase; Bax: Bcl-2 associated X protein; Bcl2: B-cell lymphoma 2; Bid: BH3 interacting-domain death 
agonist; H2O2: Hydrogen peroxide; LDH: Lactate dehydrogenase; MAPK: Mitogen activated protein kinase; MDA: Malondialdehyde; TNF-α: Tumor 
necrosis factor alpha.

over-expressed oxidative stress markers (heme oxygenase-1 expression, 8-oxo-7,8-dihydro-2¢-deoxyguanosine) along 
with reduced SOD, GPx activity, GSH/GSSG ratio indicates oxidative stress. Also upregulated pro-inflammatory 
mediators (Il-6, TNF-α) and liver markers (ALT, AST) signify liver damage due to oxidative stress-mediated inflam-
matory response[167]. CdSe/ZnS QDs were also reported to induce oxidative stress, inflammation, pyroptosis, and liver 
dysfunction. Application of Z-YVAD-FMK (caspase-1inhibitor), 2-APB (Ca2+ channel blocker), BAPTA-AM (intracellular 
Ca2+ chelator), NAC (a total ROS scavenger), Mito-TEMPO (a mtROS scavenger) and further silencing NLRP3 was 
reported to alleviate QDs mediated pyroptosis of hepatocytes, confirming the underlying mechanisms includes 
intracellular Ca2+ mobilization that triggered mtROS generation and subsequent activation of NLRP3 inflammosome 
leading to caspase-1mediated pyroptosis. A similar result was in agreement when NLRP3 knocked out mice exposed to 
QDs[168]. On the contrary except QDs accumulation in mitochondria, lysosome, and lipid droplets no significant signs of 
liver damage were observed when Kunming mice were subjected to Mn-doped ZnS QDs and polyethylene glycol-coated 
QDs exposure[169]. Similarly except slight increment of liver markers (ALT, AST, ALP) in serum, no such remarkable 
liver tissue damage was recorded in mice exposed to cadmium-free inidium-based QDs[25]. Again, cadmium telluride 
(CdTe) QDs administration was found to elevate oxidative stress in AML 12 (murine hepatoma cells alpha mouse liver 
12) and mice model, concomitant increased expression pattern of the tumor-suppressor gene (p53), proapoptotic gene 
(Bax) and decreased level of antiapoptotic marker (Bcl-2) suggests activation of mitochondria-mediated apoptotic 
pathway in hepatocytes. NF-E2-related factor 2 (Nrf2) deficiency was found to attenuate CdTe-QDs provoked injury and 
apoptosis suggesting the underlying mechanism involves modulation of the Nrf2 signaling pathway[170]. A series of 
investigations have proved that mitochondria are the prominent target of CdTe-QDs in hepatocytes. In different cell lines 
and mice models, it was found that interaction between CdTe-QDs and mitochondrial membrane resulted in 
mitochondrial enlargement, membrane potential disruption, opening of permeability transition pore, impaired oxidative 
phosphorylation via diminishing activity of electron transport chain enzymes, ROS accumulation, redox damage, ATP 
depletion and increased PGC-1α. Together all these indicate oxidative mediated stress-mediated release of cytochrome c 
and Bax to promote intrinsic and extrinsic pathways of apoptosis in CdTe-QDs exposed hepatocytes[9,171-173]. When 
normal and carcinoma liver cells were incubated with CdTe/CdS QDs for 24 h, both the cells showed similar lysosomal 
accumulation of QDs followed by abnormal activation of lysosomal enzymes that triggered lysosome-dependent ROS 
production and autophagy. Inhibition of lysosomal enzymes were also found to prevent ROS production and activation 
of autophagic flux and thereby rescued hepatocytes from cytotoxic effects of QDs[3] A recent in vivo investigation unveils 
the sub-acute low dose of CdTe QDs uptake leads to both activation of NF-KB pathway through overproduction of ROS 
that also indirectly regulates NLRP3 inflammasome assembly to trigger inflammatory cascades via inflammatory 
cytokines (IL-1β, TNF-α, IL-6) and activation of Kupffer cells to cause liver tissue injury. In in vitro study pretreatment of 
KUP5 cells with NAC (N-acetylcysteine – ROS scavenger) and DHMEQ (Dehydroxymethylepoxyquinomicin- NF-KB 
translocation inhibitor) before QDs, reversed the activation of Kupffer cells following down-regulation of NF-κB, caspase-
1, and NLRP3[174]. A recent study highlights the varied impact of CDs (Carbon Quantum Dots) on liver cells (KUP5 and 
AML12 cells in vitro) and the importance of the TFEB-lysosome pathway in regulating autophagy and apoptosis induced 
by CDs on liver cells for a comprehensive toxicological safety evaluation[175]. Follow Table 17 for a comprehensive 
account.

Gold nanoparticles
Gold is generally unreactive in its natural state but becomes reactive in its ionic form. It can also exist as gold salts, 
allowing the synthesis of nanomaterials with properties like easy synthesis, high particle reactivity, and strong optical 
characteristics[176,177]. In recent days, gold nanoparticles (AuNPs) have gained considerable attention in various fields, 
especially in biomedical sciences due to their unique physicochemical properties[178]. Nevertheless, there are many 
concerns regarding their potential hepatotoxic effects that have raised questions about their safety use in such applic-
ations. Numerous inflammatory and cytotoxic responses have been observed with smaller-sized AuNPs in comparison to 
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Table 17 Effects and molecular mechanisms underlying quantum dots induced hepatonanotoxicity

NPs Size Tested model Dose & route of administration Effects & mechanism Ref.

Cd/Se/Te QD705 12.3 ± 5.2 nm 
(TEM)

ICR mice 100 μL of 40 and 160 pmol (IV) 
sacrificed at 12 and 16 wk

ALT, AST (increased); GPx, HO-1, 8-oxo-dG 
(increased); Cu/Zn/Se (increased); SOD 
activity (decreased); GSH/GSSG; 
Unbalanced antioxidation systems; Trace 
metals, trace metal transporters; TNFα, IL-6 
(increased)

[167]

Oxidative stress and inflammation

CdSe QD 4 nm (TEM) Kunming mice 
Hepa 1–6 cells

200 nMCdCl2, 20 nM & 200 nM 
QDs (acute) for 48 h (IP); 20 
nMCdCl2, 5 nM & 10 nM QDs for 6 
wk (chronic) (IP); 20 nM CdCl2, 5 
nM, 10 nM and 20 nM QDs for 24 
& 48 h

ROS, MDA (increased); GSH-Px 
(decreased); Enlarged central vein, 
disordered hepatic cords; Reduced cell size, 
condensation; Round and condensed 
macrophage

[166]

Oxidative stress

Mn-doped ZnS 
QDs

3.8 ± 0.1 nm 
(TEM)

Kunming mice 1 & 5 mg/kg (QDs); 5 mg/kg (QDs 
PEG) (IV) for 7 da sacrificed on 8th 
& 28th day

QDs accumulated in mitichondia, 
lysosome, lipid droplets; No hepatic 
damage

[169]

CdTe QDs 2.2 nm (TEM) AML 12; ICR mice 27.66, 41.49, 53.94, 70.12, 91.16 & 
118.50 μg/mL for 24 & 48 h. 4.125, 
8.25 and 16.5 mg/kg body weight 
(IV) once a week for 4 wk

LPO, MDA, SOD, CAT, P53, Bcl-2, Nrf2, 
HO-1 (increased); Bax (decreased); ATP 
concentration (decreased); Nrf2 signaling 
pathway activation

[170]

Oxidative stress, apoptosis

CdTe QDs 7.3 ± 1.2 nm 
(TEM)

HepG2 cell 10 μg/mL containing 1 μg/mL of 
cadmium for 24 h

MMP disruption, mitochondrial swelling, 
increased intracellular ca2+ levels, impaired 
cellular respiration & decreased ATP 
synthesis; PGC-1α (increased)

[171]

Mitochondrial toxicity & dysfunction

CdTe QDs 15.25 ± 0.34 
nm (TEM)

BALB/c mice 0.4, 2, 5, 6, 7, and 10 mg/kg b.w 
(Iv) for 24 h; 5 mg/kg bw (Iv) 2 h, 
24 h, 3 d, and 1 wk 

Enlarged mitochondria with increment in 
number; Affects ETC complex & ATP 
synthesis energy metabolism impairment

[172]

Mitochondrial dysfunction

CdSe/Zn-QD 7.1 nm (TEM) L02 cells; C57BL/6 
mice; NLRP3 
knockout mice

5, 10, 20, 40, 80 nM, 24 and 48 h; 10 
nmol/kg (IV) results at 2 wk

Dose-dependent decrease in cell viability 
pyroptosis; Caspase-1 activity(increased); 
NLRP3 inflammasome activation; mt ROS 
production (increased); Cytoplasmic Ca2+ 
(increased) levels ALT, AST, MPO, TNFα, 
IL-1β (increased); γ-GT (decreased)

[168]

Oxidative stress and inflammation

Cd free indium -
based QDs

4 nm (TEM) Lister Hooded rats 12.5 & 50 mg/kg b.w. (Iv) for 24 h. 
1 wk, 4 wk

ALT, AST, ALP (slightly increased); No 
hepatic damage

[25]

CdTe/CdS QDs 12 nm (TEM) HL-7702; HepG2 
cells

1- 32 nM for 48 h Lysosomal internalization; Abnormal 
activation of lysosomal enzymes; ROS 
generation (increased); Autophagy

[3]

Apoptosis independent nanotoxicity

CdTe QDs 15.25 ± 0.34 
nm (TEM)

BALB/c mice 0.4, 2, 5, 6, 7, and 10 mg/kg b.w 
(Iv) for 24 h. 5 mg/kg b.w. (Iv)2 h, 
24 h, 3 d (d), and 1 wk (w) 

AST, ALT, T-bil (increased); Albumin 
(decreased); liver accumulation

[173]

CdTe QDs 15.25 ± 0.34 
nm (TEM)

BALB/c mice 0.4, 2, 5, 6, 7, and 10 mg/kg b.w 
(Iv) for 24 h. 5 mg/kg b.w. (Iv) 2 h, 
24 h, 3 d (d), and 1 wk (w) 

tGSH, ATP (depletion) GST, CAT 
(decreased) SOD activity (increased); Hmox 
I, Ncf-1, Ncf-2 (upregulated expression); 
PGC-1α (increased)

[9]

Oxidative stress, apoptosis

CdTe QDs 2.2-3.0 nm 
(TEM)

ICR mice; KUP5 
cells

2.5 & 10 μM/kg· b.w. (Iv) single 
dose once per wekk for 14 d; 5, 50 
& 500 NM

IL-1β, TNF-α, IL-6 (increased); Assembly of 
NLRP3 inflammasome; ROS productin 
(increased); Activation of NF-KB pathway; 
Kupffer cell activation

[174]

Oxidative stress, Inflammation
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8-oxo-dG: 8-oxo-7,8-dihydro-2¢-deoxyguanosine; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, ATP: 
Adenosine triphosphate; Bax: Bcl-2 associated X protein; Bcl-2: B-cell lymphoma 2; CAT: Catalase; Cu-copper; ETC: Electron transport chain; GSH-Px: 
Glutathione peroxidase; GSSG: Glutathione disulfide; GST: Glutathione S-transferase; HO-1/Hmox I: Heme oxygenase 1; IL-1β: Interleukin 1 β; IL-6: 
Interleukin-6; LPO: Lipid peroxidation; MDA: Malondialdehyde; MMP: Mitochondrial membrane potential; MPO: Myeloperoxidase; Ncf-1,2: Neutrophil 
cytosolic factor 1,2; NF-κB: Nuclear factor kappa beta; NLRP3: NOD-like receptor protein 3; Nrf2: Nuclear factor erythroid 2-related factor 2; P53: Tumor 
suppressor protein p53; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; ROS: Reactive oxygen species; Se: Selenium; SOD: 
Superoxide dismutase; T-Bil: Total bilirubin; tGSH: Total glutathione; TNFα: Tumor necrosis factor alpha; γ-GT: Gamma glutamyl transferase; Zn: Zinc.

contact with larger-sized AuNPs with the same mass concentration because of their highly reactive role with biological 
constituents, and have stressed the harmful effects produced by a large number of nanoparticles[179]. AuNPs activate 
hepatic macrophages and consequently stimulate the occurrence of immune hepatitis and liver dysfunction[180,181]. 
Serum ALT and AST levels, indicative of liver damage, remained within the normal range in NC (Normal Chow) diet-fed 
mice 24 h or 7 d after AuNP administration, suggesting AuNPs' non-toxicity under normal diet conditions[182]. 
Conversely, MCD (methionine and choline-deficient) diet-fed mice exhibited elevated ALT and AST levels post-AuNP 
administration, indicating hepatotoxicity. The experiment revealed that MCD diets induced hepatic TG accumulation 
through the inhibition of mitochondrial beta-oxidation and blocking hepatic export of very low-density lipoprotein, but 
AuNP-induced hepatotoxicity was attributed to increased inflammatory response and apoptosis, not accumulated TG 
contents[182]. Intravenously injected AuNPs rapidly accumulate in Kupffer cells in the liver, stimulating these cells and 
leading to increased monocyte function, upregulated cytokine secretion, and subsequent liver damage through enhanced 
necrosis, apoptosis, and abnormal ROS production[183]. The toxicity of AuNPs is associated with their capacity to 
stimulate inflammatory responses and accelerate stress-induced apoptosis, with smaller nanoparticle sizes contributing to 
toxicity[184]. AuNPs induce hepatocellular injury through ROS generation, promoting oxidative stress[185]. This 
oxidative stress, characterized by lipid peroxidation, protein damage, and DNA modifications, is exacerbated by inflam-
matory responses and pro-inflammatory cytokines. The correlation between nanoparticles and oxidative stress suggests 
fatty acid peroxidation as a probable cause for AuNP-triggered DNA destruction[186]. Khan et al[187] measured 
oxidative stress markers in rats exposed to AuNPs, revealing increased MDA levels specifically in the liver, indicating 
AuNPs' liver-specific oxidative stress. The mutagenic and carcinogenic nature of MDA, a product of fatty acid 
peroxidation, suggests its potential to combine with DNA, leading to DNA damage and potentially activating 
programmed cell death pathways[187]. Research has shown that AuNPs can enter hepatocytes through various 
mechanisms, including endocytosis and direct penetration of the cell membrane[188,189]. Once internalized, these may 
accumulate in specific subcellular compartments, such as the ER or mitochondria which leads to inducing organelle-
specific toxicity. The disruption of cellular organelles can trigger a cascade of events leading to hepatocellular damage
[190,191]. Cell migration, crucial for mammalian cell survival and differentiation and regulated by external signals, was 
significantly reduced by 70% in HeLa cells treated with MUAM-AuNPs, as demonstrated in a gap-filling assay by Lee et 
al[192]; this reduction was attributed to the loss of long F-actins aligned with the migration axis, impacting migration-
related signaling pathways, disrupting extracellular matrix organization, and ultimately impeding cell migration[192-
194]. Additionally, AuNPs induced differential gene expression in treated samples, involving both upregulated and 
downregulated genes associated with cellular metabolism, protein catabolism, cell cycle, and G1/S transition; notably, 
downregulation of genes related to the G1 phase and nucleic acid metabolism suggested inhibition of DNA synthesis. In a 
separate experiment, 1.4-nm triphenyl monosulfonate (TPPMS)-coated AuNPs caused necrotic cell death through 
elevated oxidative stress and loss of mitochondrial potential, while Tiopronin-coated AuNPs induced necrosis via 
increased ROS production and apoptosis due to mitochondrial dysfunction; citrate AuNPs also exhibited dose-dependent 
ROS production leading to apoptosis[195,196]. Moreover, Au clusters significantly increased ROS production by 
inhibiting TrxR1 activity, inducing apoptosis, and disrupting mitochondrial membrane polarization[197]. Finally, 
irradiation in the presence of AuNPs led to an interaction with the cell membrane protein disulfide isomerase, disrupting 
thiol balance, causing cellular redox imbalance, and ultimately inducing oxidative stress[196].

Silver nanoparticles
Silver nanoparticles (AgNP)-intoxication significantly disturbs normal liver function, elevates hepatic lipid peroxidation, 
increases liver DNA damage, and induces biochemical and histological alterations in rats[198]. The toxicity of AgNPs 
mainly originates from the degraded forms of AgNPs, the “particle-specific effect” or the triggered oxidation stress[199]. 
After cellular intake, these (AgNPs) would enter the acidic endo/Lysosomes (pH4.5–6.5) and undertake chemical 
transformation from particulate silver to elemental silver, Ag+, Ag-O- and Ag-S- species[200]. The Ag+ released from 
AgNPs dissolution is thought to bind intracellular sulfhydryl group (−SH)-containing molecules and leads to cytotoxicity, 
which is known as the “Trojan-horse” mechanism[199]. AgNPs also help in intracellular ROS production and cause 
cellular damage, e.g. genotoxicity, mitochondrial dysfunction, and cell membrane damage[201]. Ag ions have been 
reported to cause disturbance and destruction of mitochondrial function through interaction with thiol groups of inner 
mitochondrial membrane proteins and AgNPs decrease the activity of mitochondrial respiratory chain complexes and 
reduce antioxidant factors like glutathione, thioredoxin, superoxide dismutase, and N-acetylcysteine in liver cells[202,
203]. Xu et al[201] investigated two normal hepatic cell lines (NCTC1469 and L-02) and two hepatoma cell lines (Hepa1–6 
and HepG2) to assess the cytotoxicity of AgNPs. They have shown AgNPs could certainly lead to intra-cellular oxidation 
stress and cytotoxicity through acting GST molecules and thus suppressing its enzyme activity, although GST expressions 
were not significantly affected. The research also highlighted the binding of High Molecular Weight proteins to Ag+ 
became saturated and more Low molecular weight molecules (e.g. metallothionein) were continually synthesized by cells 
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to neutralize AgNPs and Ag+ for detoxification. It indicates that the dissolution of internalized AgNPs resulted in the 
formation of Ag-protein complexes. As a consequence, the damage of protein molecules by AgNPs and Ag+ would 
destroy the intra-cellular homeostasis of the liver. Assar et al[204] pointed out that after 15 and 30 d of exposure to the 
maximum dose of AgNPs in rats, a drop in liver weight was observed to a striking rise in lipid peroxidation, leading to 
structural changes to lipid vacuoles. This finding also showed that a state of oxidative injury was provoked by silver 
nanoparticles in a dose-dependent way by the raised hepatic MDA (malondialdehyde) levels and the depletion of the 
antioxidant defensive mechanism by reducing the hepatic reduced glutathione (GSH) levels. The most severe hepatic 
damage was associated with increasing the AgNP-administered dose and expanding exposure time. Research findings 
from Matés[205], Srivastava et al[206], Ansar et al[207], and Piao et al[208] have detailed that continuous elevation of Ag+ 
concentration leads to continuous induction of hydroxyl radical, ultimately consumes more intracellular GSH, and 
disturbing the homeostasis of free radical scavenging. AgNPs raised MDA levels causing oxidative damage in rats[209]. 
Many studies support that the liver is the main target organ for AgNP action. The histological assessment of the liver 
indicated pathological changes that were dose and time-dependent and happened in the liver after 30 d of increasing 
concentrations of AgNP exposure. Sooklert et al[210] and Elje et al[111] showed that low levels of dissolved Ag were 
found in the Ag-NPs exposure shortly after exposure in the HepG2 human liver cells, and the amounts were lower than 
the measured EC50 for cytotoxicity of AgNO3 and identified six genes from HepG2 Liver cells, with three showing 
significant up-regulation of FOS and JUN, and two demonstrating up-regulation of EGR1, CXCL8, HSPB1, and MT2A. 
Notably, high-dosage AgNP exposure increased fold changes in genes associated with cell proliferation (FOS, JUN, and 
EGR1)[210]. An increased intracellular level of ROS can also activate cell-death-regulating pathways, such as p53, AKT, 
and MAP kinase[185].  Microscopic images revealed nuclear membrane distortion, blebbed nuclei formation, and 
accumulation of autophagic vacuoles in AgNP-treated liver cells, along with increased mitochondria, cytoplasmic 
vacuoles containing silver nanoparticles, and swollen lipid droplets. In hepatocytes, CEBPA (CCAAT enhancer binding 
protein alpha) is highly expressed and plays a critical role in regulating many metabolic liver genes, while CEBPB 
(CCAAT enhancer binding protein beta) is up-regulated during liver regeneration and plays a crucial role in the 
development of liver or acute inflammatory response[211]. The proto-oncogenes FOS and JUN, which are known to play 
important roles in both cell survival and the signaling pathway involved in hepatotoxicity, were highly up-regulated in 
the presence of AgNPs. In addition to that, heat shock protein family members HSPB1, HSPA4L, and HSPH1 were also 
significantly up-regulated[212]. Xin et al[213], reported that AgNPs induced oxidative stress, and consequently increased 
expression of heat shock protein and heme oxygenase (HMOX1) in both liver and lung cells. Sooklert et al[210] identified 
24 interesting candidate genes as possible targets of AgNP-induced hepatocellular toxicity. SOX15, a highly upregulated 
gene, acts as a transcription activator involved in embryonic development regulation and cell fate determination. TLL1, 
the most noticeable down-regulated gene, is necessary for various developmental events. AgNPs may exert cytotoxic 
effects through SOX15 upregulation or TLL1 downregulation in hepatic cells. Deregulated autophagy after AgNP 
treatment was also seen which may lead to increased cell death either independently or synergistically with apoptosis or 
necrosis[214]. Wen et al[215] and Recordati et al[216] observed increased hepatocellular necrosis and gall bladder 
hemorrhage in mice injected with AgNPs, particularly with 10nm AgNPs. AgNP administration induced exacerbated 
hepatic steatosis, heightened liver injury, and elevated risk of NAFLD development and progression[215,216]. The effects 
were attributed to hyperactivation of SREBP-1c-mediated de novo lipogenesis, pro-inflammatory cytokine activation, and 
increased oxidative stress and DNA methylation[216]. Kim et al[217] demonstrated that cAgNPs (citrate-coated and 
stabilized) caused significant changes in ALP and LDH levels, indicating liver tissue damage persisting up to 28 d after 
exposure and suggesting prolonged impairment of liver structure and functions following a single exposure. From Lee et 
al[218], it was reported that the deposited AgNPs in hepatocytes were found to be individual particles with a size smaller 
than 100 nm in diameter. AgNPs accumulated in hepatocytes' endosomes and lysosomes, with additional deposition in 
Kupffer cells (> 100 nm agglomerates)[218]. Kupffer cells played a role in inflammation observed with mild inflammatory 
cell infiltration in portal vein areas. Elevated ALT and AST levels indicated liver damage persisting up to one month after 
AgNP administration[218]. Maternal exposure to AgNPs via the intragastric route led to increased silver content in rat 
offspring livers, causing a significant reduction in body weight and dilated blood vessels. Liver damage, indicated by 
vacuolation and lipid peroxidation, was associated with elevated caspase-9 concentration, suggesting AgNPs induce 
apoptosis through the intrinsic pathway in offspring livers[219].

CONCLUSION
In summary, the extensive examination sheds light on the intricate landscape of hepatotoxicity induced by various 
nanoparticles (NPs), revealing distinct mechanisms and effects associated with different nanomaterials. Size-dependent 
hepatotoxicity is observed in SiNPs, with smaller particles causing more severe liver injury. The combined toxicity of 
SiNPs with other liver toxins highlights potential synergies in NP-induced liver damage. Oxidative stress, inflammation, 
apoptosis, and genotoxicity are induced by NiO-NPs, WO3 NPs, Nano-CuO, and other nanomaterials, illustrating the 
complexity of NP-mediated hepatotoxic effects (Figures 1-3).

Integrative omics analyses identify key proteins and disrupted metabolic pathways in SiNP-induced hepatotoxicity, 
underscoring the necessity for a multifaceted understanding of NP-induced liver damage. CNTs, including SWCNTs and 
MWCNTs varieties, contribute to hepatotoxicity through inflammatory responses and oxidative stress, with variations in 
toxicity observed among different types of CNTs.

Moreover, exposure to CuS/CdS-NPs, cobalt nanoparticles, nanoclay particles, nanocellulose, polystyrene 
nanoparticles, chitosan nanoparticles, hydroxyapatite nanoparticles, quantum dots, and gold nanoparticles elucidates 
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Figure 3 Different modalities of nanoparticles induced hepatotoxicity. ER: Endoplasmic reticulum; ROS: Reactive oxygen species.

diverse hepatotoxic effects, underscoring the importance of considering nanoparticle characteristics in toxicity 
assessments.

Despite these toxicities, it is noteworthy that nanoparticles play a pivotal role in diverse biomedical applications, 
showcasing their versatility and impact. In cancer therapy, catalytic strategies employing substances like hydrogen 
peroxide and glucose, alongside biocompatible nanomaterials, promise efficient treatment with minimal side effects[220]. 
Nanomaterials contribute significantly to the fight against coronavirus disease 2019, aiding in rapid diagnostics, vaccine 
development, and therapeutic interventions[221]. Transition metal-based nanoparticles, particularly those with 
anisotropic shapes, offer unique properties for biomedical applications, including drug delivery and imaging[222]. 
Precision nanoparticles (PNPs) emerge as discrete structures with precisely tailored heterogeneity, addressing challenges 
associated with uncontrolled nanoparticle variability[223]. PNPs significantly enhance the performance of nanoparticle-
based vehicles in various biological processes, presenting a promising avenue for improved biomedical outcomes.

Therefore, the study concludes by emphasizing the urgent need for a comprehensive understanding of NP-induced 
hepatotoxicity to ensure the safe use of nanomaterials, suggesting further in vivo studies and exploration of potential 
protective strategies. Additionally, the proposal of herbal gold nanoparticles as a potential hepatoprotective agent opens 
avenues for future research and development in the field. Overall, the findings underscore the complexity and diversity 
of nanomaterial-induced hepatotoxicity, emphasizing the importance of continued research for safer nanomaterial applic-
ations in various contexts.
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