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Abstract
BACKGROUND 
Assessment of the potential utility of deep learning with subsequent image ana-
lysis to automate the measurement of hallux valgus and intermetatarsal angles 
from radiographs to serve as a preoperative aid in establishing hallux valgus 
severity for clinical decision-making.

AIM 
To investigate the accuracy of automated measurements of angles of hallux valgus 
from radiographs for further integration with the preoperative planning process.

METHODS 
The data comprises 265 consecutive digital anteroposterior weightbearing foot 
radiographs. 181 radiographs were utilized for training (161) and validating (20) a 
U-Net neural network to achieve a mean Sørensen–Dice index > 97% on bone 
segmentation. 84 test radiographs were used for manual (computer assisted) and 
automated measurements of hallux valgus severity determined by hallux valgus 
(HVA) and intermetatarsal angles (IMA). The reliability of manual and computer-
based measurements was calculated using the interclass correlation coefficient 
(ICC) and standard error of measurement (SEM). Inter- and intraobserver 
reliability coefficients were also compared. An operative treatment recommen-
dation was then applied to compare results between automated and manual angle 
measurements.

RESULTS 
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Very high reliability was achieved for HVA and IMA between the manual measurements of three independent 
clinicians. For HVA, the ICC between manual measurements was 0.96-0.99. For IMA, ICC was 0.78-0.95. Com-
paring manual against automated computer measurement, the reliability was high as well. For HVA, absolute 
agreement ICC and consistency ICC were 0.97, and SEM was 0.32. For IMA, absolute agreement ICC was 0.75, 
consistency ICC was 0.89, and SEM was 0.21. Additionally, a strong correlation (0.80) was observed between our 
approach and traditional clinical adjudication for preoperative planning of hallux valgus, according to an operative 
treatment algorithm proposed by EFORT.

CONCLUSION 
The proposed automated, artificial intelligence assisted determination of hallux valgus angles based on deep 
learning holds great potential as an accurate and efficient tool, with comparable accuracy to manual measurements 
by expert clinicians. Our approach can be effectively implemented in clinical practice to determine the angles of 
hallux valgus from radiographs, classify the deformity severity, streamline preoperative decision-making prior to 
corrective surgery.

Key Words: Computer-aided diagnosis; Artificial intelligence in orthopedics; Automated preoperative decision support; Deep 
learning; Medical imaging
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Core Tip: This study presents an accurate method for automated assessment of angles of hallux valgus on high-resolution 
weight-bearing anteroposterior feet radiographs. Reference points are estimated according to the AOFAS standard on 
automatically segmented bones of the foot. The proposed method accurately calculates angles even in the case of significant 
toe deformity automating preoperative decision-making. Experimental results revealed high reliability of hallux valgus angle 
and intermetatarsal angle measurements between the proposed algorithm and medical doctors, achieving a correlation of 
almost 80%.

Citation: Kwolek K, Gądek A, Kwolek K, Kolecki R, Liszka H. Automated decision support for Hallux Valgus treatment options 
using anteroposterior foot radiographs. World J Orthop 2023; 14(11): 800-812
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INTRODUCTION
Hallux valgus (HV) is a foot deformity that affects a considerable percentage of the population[1,2]. It is a complex 
positional deformity of the first ray that leads to altered joint mechanics, dysfunction, and progressive pain. The tech-
nique of weightbearing dorsoplantar radiographs was standardized and determined in the AOFAS research committee 
report[3-6]. Orthopedic surgeons frequently use radiographic angles to make clinical decisions for patients with 
symptomatic HV[7-9]. Various radiographic measurements used in hallux valgus treatments were discussed[3,10]. The 
reliability of radiographic measurements in HV was also studied[11]. Through the use of WBCT scans, it has been de-
monstrated that up to 87% of hallux valgus cases exhibit metatarsal bone pronation, emphasizing the intricate 
multiplanar nature of this deformity. This metatarsal pronation explains the perceived metatarsal bone shape and the 
misalignment of the medial sesamoid bone in radiological studies, which has been recognized as a significant factor 
contributing to recurrence following treatment. As a result, distal metatarsal articular angle has proved unreliable, 
demonstrating a poor interobserver agreement[12,13]. Further research is needed to develop effective approaches for 
addressing the rotational deformity in individuals with HV[2,14,15].

Key angles utilized in clinical practice to establish the severity of HV are the hallux valgus angle (HVA) and the 
intermetatarsal angle (IMA)[8,12,13,16-18]. Intra- and inter-observer agreement for radiographic measurement of HVA/
IMA is reportedly good using various digital techniques[11,17,19]. The HVA is between the longitudinal axes of the first 
metatarsal and the proximal phalanx (PP). The IMA is between the longitudinal axes of the first and second metatarsal 
bones (Figure 1). Many methods were used to facilitate and accelerate manual or computer-assisted determination of the 
longitudinal axes of the first, second metatarsal (1,2MT) and the hallucial PP bones, e.g., establishing reference points, to 
make measurements more repeatable[7,20].

Traditionally, these angles were manually measured on hard-copy radiographs. Nowadays, computer-assisted 
measurement methods are being developed, that reduce the measurement error of HVA[21-23]. New possibilities for 
radiographic images analysis have emerged thanks to recent advances in clinical applications of deep learning[24-29]. 
This study is among the first forays into automated HVA/IMA measurements from radiographs.

Kwolek et al[30] introduced an algorithm for the automatic recognition of radiographs of the hallux valgus using U-Net 
neural network with promising outcomes. A study on hallux valgus measurement with a deep convolutional neural 

https://www.wjgnet.com/2218-5836/full/v14/i11/800.htm
https://dx.doi.org/10.5312/wjo.v14.i11.800


Kwolek K et al. Automated decision support for HV treatment

WJO https://www.wjgnet.com 802 November 18, 2023 Volume 14 Issue 11

network based on landmark detection has been discussed by Li et al[31]. In contrast to our approach based on the toe 
bones segmentation and reference points estimation, their method is based on a small number of landmark points. 
Moreover, their database contains mainly radiographs without hallux valgus (almost 50%) or with small deformation, i.e. 
only 5/340 (1.5%) radiographs have IMA > 16° (severe hallux valgus deformation).

In this study, we significantly expanded algorithms to automate HV assessment from foot radiographs[30]. The 
necessary bones (first, second metatarsal, and hallucial PP) were segmented and labelled by a U-Net to set reference 
points and calculate HVA/IMA automatically. Expert clinicians also determined these angles manually, with outcomes 
being compared later. Moreover, our algorithm was evaluated only on patients' radiographs who subsequently 
underwent hallux valgus surgery. Our dataset contains a considerable percentage of radiographs with severe forefoot 
deformations including toe overlap, severe pronation, and sesamoid dislocation. Our bone segmentation-based algorithm 
is sufficiently robust to handle even such challenging circumstances anatomy as toes overlapping.

Classification systems
Traditional classification methods rely upon weightbearing anteroposterior radiographs to determine the severity of HV 
based on the HVA, and IMA (Figure 1)[17]. More than 100 different operative techniques were described for the correc-
tion of HV[32-34]. The overall clinical picture together with the degree of deformity determine the surgical decisions 
made. A suitable intervention is selected by considering the overall clinical picture along with the degree of deformity, 
potential degenerative changes of the first metatarsophalangeal joint, size, and shape of the metatarsal, and joint 
congruency.

Our algorithm is based on operative treatment algorithm proposed by EFORT (Figure 2)[35]. A convolutional neural 
network was trained to segment bones, with subsequent image analysis to automatically estimate angles and recommend 
appropriate surgical decisions. Digital radiographs were managed using a picture archiving and communication system 
and the IMPAX software suite.

MATERIALS AND METHODS
Algorithm outline
The measurements of the HVA/IMA were performed automatically on bones segmented and labelled by the U-Net 
neural network (Figure 3)[36]. To achieve this, the U-Net was first trained using anteroposterior foot radiographs and 
corresponding images with manually segmented and labelled bones. By providing automatically segmented and labelled 
bones, the required reference points were likewise automatically measured and the HVA/IMAs ultimately calculated.

The U-Net was trained only on right feet radiographs to reduce the cost and time of model training. Radiographs with 
the left feet were mirrored and then incorporated into the database. At the angle measurement stage, the segmented 
images with the left feet were back-mirrored to perform the measurements on the feet in the original orientation.

Dataset
133 patients were randomly selected between 2014 and 2021. A total of 265 pre-operative (unilateral or bilateral) antero-
posterior feet radiographs were sourced from the electronic database of the authors’ institution (demographics in 
Table 1). Inclusion criteria were: available weight-bearing radiographs, sole indication: symptomatic hallux valgus. 
Exclusion criteria were: No available weight-bearing radiographs, prior osteotomies, radiographs with severe os-
teoarthritis and first metatarsophalangeal joint deformation, and/or severe, e.g., rheumatoid forefoot deformations or 
Charcot diabetic foot, visible plates, and other artificial elements distorting the image of the bone. Radiographs were 
obtained using standard radiology equipment Eidos RF439 and Luminos DRF unit and digitally transmitted via a picture 
archiving and communication system.

The data was divided randomly into three subsets: training, validation, and testing (Figure 3B). Both the patient's right 
and left feet were included in these subsets. The training and validation subsets were used to train and validate the U-Net 
for bone segmentation, while the testing subset was used to evaluate the performance of the trained U-Net and automat-
ically measure the HVA/IMA.

Training and validation subset
We initially applied a 71/29 percent random split between training and validating subsets to develop the U-Net. After 
achieving the Sørensen–Dice index (SDI) greater than the cutoff value, the final training set was established.

Testing subset
According to Zou et al[37], the minimum number of subjects (testing subset) to estimate the agreement of the measure-
ments between the two methods is 80. Our testing subset consisted of 84 randomly selected anteroposterior foot 
radiographs. Apart from the input radiographs, the testing subset also contained manually segmented radiographs to 
evaluate the quality of bone segmentation by the U-Net network. We calculated the SDIs using radiographs with 
automatically and manually segmented bones. There were no duplicate patient radiographs between the training, 
validation, and testing subsets. The validation radiographs were used to select the best neural network model, and 
validate the performance of the selected network during its training. The HVA/IMA were estimated only on the testing 
radiographs.
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Table 1 Demographics

Age Sex Hallux valgus angle Intermetatarsal angle

All feet Right feet Left feet All feet Right feet Left feet

Number of subjects 133 133, 16M (12%)/117F (88%) 265 133 132 265 133 132

Number of measurements - - 243 120 123 212 105 107

Range 23-81 yr - 4-68° 4-68° 10-61° 4-26° 4-26° 7-22°

Average 55.8 yr - 31.2° 31.3° 31.1° 13.8° 14° 13.7°

M: Male; F: Female; -: Not applicable.

Figure 1 Determination of angles of hallux valgus as described by AOFAS. HVA: Hallux valgus angle; IMA: Intermetatarsal angle.

Anonymization and manual labelling
The input radiographs were anonymized (Figure 3A) and stored in .png image format with lossless compression. 
Radiographs were digitally anonymized with unique IDs. To train a U-Net network that would achieve high bone 
segmentation accuracy, bones were manually annotated on original high-resolution radiographs. Initially, seventy 
radiographs were manually segmented and labelled by the first author in Adobe Photoshop. The radiographs with 
labelled bones were randomly split into a set of 50 training and 20 validation images. Manual segmentation of bones on 
radiographs is a very time-consuming task with considerable effort necessary to properly separate the border of bone 
from surrounding soft tissue. Considering the current understanding of pronation and variable shape of the first 
metatarsal head in hallux valgus deformation described by Wagner et al[14], the first metatarsal head and the sesamoid 
bones were delineated carefully and precisely by a foot surgeon to achieve precise measurements of the HVA/IMA[11]. 
The complex structure of bones in anteroposterior feet radiographs makes automated segmentation (delineation) partic-
ularly difficult[38]. Radiographs are contaminated by noise, artifacts, insufficient contrast, resolution, and/or intensity. 
These factors made preparing the dataset and developing the algorithm particularly challenging.

Various bone segmentation strategies were considered during algorithm development. We started with a binary 
segmentation of bones with bone extraction[30]. However, this approach produced clinically unreliable results in cases of 
cross-over toe with higher HVA. To overcome these difficulties, and simplify the algorithm to achieve robust automated 
separation of each required bone even in "difficult" radiographs, we established main regions on each foot radiograph via 
multi-class segmentation (Figure 3A). This approach allowed us to select and process just the three bones forming the 
HVA/IMA (1,2MT, and hallucial PP) and exclude all remaining structures and radiograph background. Considering that 
the region of interest on a given foot may have varying aspect ratios (height to width), some images were padded 
vertically with rows of black pixels to standardize the image size to 768 × 1024 pixels without changing the resolution 
(Figure 4).

U-Net training and validation
Radiographs pre-processing: The radiographs were prepared as described above to training a U-Net neural network[36]. 
We designed a U-Net neural network for bone segmentation that operates on grey images sized 768 × 1024 px (Figure 4). 
In contrast to the U-Net proposed by Ronneberger et al[36] our network is symmetric one, i.e. the input image size is equal 
to output map size, it performs multi-class segmentation, and relies on the Dice loss and score for training and evaluation, 



Kwolek K et al. Automated decision support for HV treatment

WJO https://www.wjgnet.com 804 November 18, 2023 Volume 14 Issue 11

Figure 2 Operative treatment algorithm of hallux valgus. D1 - decision for intermetatarsal angle (IMA) 10°-15° and hallux valgus angle (HVA) < 30°, D2 - 
decision for IMA > 15° and HVA < 45°, D3 - decision for IMA > 15° and HVA > 45°. HVA: Hallux valgus angle; HVI: Hallux valgus interphalangeus; IMA: 
Intermetatarsal angle; MTP: Metatarsophalangeal; TMT: Tarsometatarsal.

Figure 3 Data flow in the proposed approach. A: Bones are manually segmented and labelled from anonymized input radiographs to perform multi-class 
segmentation using a U-Net neural network; B: Radiographs are then randomly assigned to three subsets: training, validation, and testing; C: The accuracy of bone 
segmentation in each training cycle of the U-Net is validated on a fixed validation subset consisting of 20 radiographs. The U-Net network is trained on a training 
subset initially consisting of 50 radiographs, which is increased by 10 each training cycle until achieving average Sørensen–Dice index (SDI) > 97% on the validation 
set; D: Once the network achieves an SDI > 0.97, calculated on the testing subset, the U-Net model completes. If SDI is not > 0.97, the training subset is extended 
and the U-Net is retrained; E: The final U-Net model is used to segment and label bones on all testing radiographs; F: These are used to automatically determine 
reference points and measure hallux valgus and intermetatarsal angles.
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Figure 4 Architecture of U-Net neural network for bone segmentation from radiographs. The network consists of an encoder (contracting path), 
which encodes an input image size of 768 × 1024 pixels to 42 × 64 × 1024 feature tensor at the bottleneck, and a decoder (expanding path) that decodes the feature 
tensor to the segmented image of the same size as the input image. The decoder follows the typical architecture of a convolutional network. Each block in the 
decoder consists of two 3 × 3 convolutions, each followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling with stride 2 for down-sampling. Each down-
sampling step of the encoder doubles the number of feature channels and decreases the image resolution by half. Every block in the decoder comprises upsampling 
the feature map followed by a 2 × 2 convolution that halves the number of feature channels - a concatenation with the correspondingly cropped feature map from the 
contracting path - and two 3 × 3 convolutions, each followed by a ReLU.

respectively. The accuracy of the bone segmentation was evaluated using SDI which is the most used metric in medical 
image segmentation[37,39]. We assumed that the threshold SDI should have a mean greater than 97%, with a minimum 
value greater than 92%. SDIs were determined only for the three bones required to estimate HVA/IMA. During U-Net 
training, the calculated SDI was used to check whether U-Net training should be stopped or continued on an extended 
training subset containing more images. After U-Net training was complete, the SDI was checked on the testing subset to 
verify whether the U-Net achieved the required generalizability. The initial training subset consisted of 50 anteroposterior 
foot radiographs with corresponding bone masks and labels. The initial training set was increased by 10 images after each 
training round until the threshold SDI was achieved on the validation subset (Figure 3C). The validation subset was fixed 
during training and used to compare the segmentation abilities of networks trained on incrementally larger training 
subsets. The threshold SDI was achieved on a training set of 150 radiographs with corresponding bone masks and labels. 
After adding an additional radiographs, the final training set consisting of 161 training images and 20 validation images 
(90% and 10%, respectively) was used to train the final U-Net. The dataset is available upon request.

Architecture and training U-Net: The neural network for bone segmentation follows the standard U-Net architecture 
established by Ronneberger et al[36]. Each U-Net encoder and decoder contains four layers (Figure 4). The validation SDI 
was calculated at the end of each epoch during the training of the U-Net, and the training was stopped when the SDI did 
not increase over 10 following epochs. This served as an early stop technique to avoid overfitting, where the value of 
early stop (patience) was set to 10. The U-Net was trained using Adam optimizer with Dice loss, learning rate (LR) set to 
0.0001 (with reducing LR on plateau) and batch size equal to 8. The number of epochs was set to 80, and a callback was 
used to save the best U-Net model and its weights. The training data was augmented using mirroring, rotations, and 
contrast enhancement. Training of neural networks was performed on NVIDIA A100 GPU, whereas the testing was 
performed on the notebook's GPU (RTX2060).

Final validation of U-Net: Before measuring HVA/IMA, the trained U-Net was evaluated on the testing subset to assess 
its generalizability (Figure 3D). As the average SDI was larger than 97% on the testing subset with a minimal score larger 
than 92%, we used the trained U-Net to segment bones on all test radiographs (Figure 3E). In image post-processing, 
small holes in bones segmented by the U-Net were filled using morphological operations, and artifacts such as small 
blobs were deleted. Our algorithm first segmented and labeled bones that it then used to automate determining reference 
points and HVA/IMA measurements (Figure 3F, Figure 5). The programmer who trained the U-Net did not parti-cipate 
in manual measurements of HVA/IMA and did not see any results before statistical analysis.

Measurement of HVA and IMA
Automatic determination of reference points and angles: Using the anteroposterior feet radiographs, the U-Net 
segmented bones and labelled them with different colors (Figure 4). Using these labels our algorithm selected three bones 
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Figure 5 Determining reference points of first and second metatarsals and hallucial proximal phalanx. A: Input radiograph; B: Three bones of 
interest: 1,2MT, and hallucial PP were approximated by ellipses to estimate bone axes, which were then used to determine bone endpoints; C: The elliptical axes 
were split into three parts with specific proportions to determine segment endpoints (marked by black dots) and reference points of the respective bone being 
established on a transverse line perpendicular to the longitudinal at a point equidistant from the outer border of the medial and lateral cortices (black crosses). Brown 
color show unsegmented (bone overlap) areas of the proximal epiphyseal of the second metatarsal bone; D: The central axes (white lines) were automatically 
determined through reference points (marked by black dots).

of interest: 1,2MT, and hallucial PP. HVA/IMA were automatically measured using reference points from these bones.
According to AOFAS (Figure 1) all reference points on the 1,2MT, and hallucial PP are the metaphyseal/diaphyseal 

points from which a guideline had to be determined to automate measurement of bone axes[18]. The final bone split 
ratios were selected following various combinations of bone split ratios to obtain the points closest to the diaphysis 
(Figure 5). For the 1MT, the reference points were located at 0.3 of the bone length proximal to the distal articular surface 
and at 0.25 of the bone length distal to the proximal articular surface. For the 2MT: 0.30 and 0.10, and for the hallucial 
proximal phalanx: 0.25 and 0.25, respectively.

Statistical analysis
Eighty-four radiographs of patients were used to measure HVA/IMA both manually by clinicians (reference method) 
and automatically by our algorithm. The reliability of the measurements between these two approaches was calculated 
using ICC and the standard error for a single measurement (SEM). Manual measurements (HVA/IMA) were performed 
by: an orthopedic surgeon (OA) with 7 years’ experience and repeated at 2 mo in blinded test (OA1 and OA2), an orthopedic 
surgeon (OB) with 15 years of experience; and by musculoskeletal radiologist (R) with 15 years of experience. Interob-
server and intraobserver reliability coefficients (ICC) were calculated. The observers were not aware of any clinical 
results. Assessment of the HVA/IMA was performed according to the guidelines of the AOFAS ad hoc Committee on 
Angular Measurements (Figure 1) and digital technique using Radiant/Carestream[7,18,40]. Our algorithm then classi-
fied the appropriate severity (Figure 2) and operative decisions were compared against the orthopedic surgeon (OA2). All 
statistical calculations were performed using MedCalc.

RESULTS
We proposed a novel automated HVA/IMA measurement method using deep learning algorithms. To measure these 
angles, the 1,2MT, and hallucial PP bones were automatically segmented, with reference points then automatically 
assigned. We obtained high interobserver and intraobserver correlations between manual measurements of HVA and 
IMA, and great agreement between artificial intelligence (AI) (our algorithm) and clinician angle measurements (Table 2). 
We analyzed HVA and IMA measurement errors for each patient’s radiograph finding (Figures 6 and 7). Standard Error 
of the Mean for HVA was 0.26 and 0.16 for IMA. The accuracy of angles measured by the U-Net is similar to that of 
orthopedic surgeons.

A decision system was developed and tested according to the EFORT operative treatment algorithm (Figure 2)[35]. 
Operative decisions were taken (D1- chevron, D2- chevron or scarf, D3- scarf or Lapidus) based on calculated angles. The 
AI decisions were compared to OA2 decisions for concordance. The agreement of clinician decisions was also compared. 
The ratio of same pre-operative surgical decisions among AI and OA2 was almost 0.80 (67/84), which was higher than the 
ratio among clinicians (Table 2). A key achievement of our algorithm is that it saves radiologist and orthopedic surgeon’s 
time while providing a clinically actionable HVA/IMA measurement that supports preoperative planning.
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Figure 6 Measurement errors (in degrees) for AI (our algorithm) compared to orthopedic surgeon (OA2) for each radiograph. A: Hallux valgus 
angle; B: Intermetatarsal angle.

DISCUSSION
Some initial work on deep-learning radiographic and WBCT foot analysis was recently published[41-44]. While WBCT is 
arguably the future of hallux valgus preoperative qualifications, X-ray remains the standard as it is cheap, and widely 
available for symptomatic HV[38,45]. This work is in line with emerging research and substantially improves upon our 
previous algorithm. As demonstrated experimentally, the proposed approach can estimate HV angles on high-resolution 
radiographs and classify the severity of HV as a preoperative decision-making tool. Moreover, this work may expedite 
novel developments in forefoot surgery. This will provide a reliable opportunity to compare preoperative and posto-
perative measurements and analyze the effects of surgical correction to produce better HV treatment standards.
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Table 2 Correlation of hallux valgus angle, intermetatarsal angle, and pre-operative surgical decisions between clinicians, and against 
artificial intelligence

Hallux valgus angle correlation 
(ICC) Intermetatarsal angle correlation (ICC) Pre-operative surgical decisions 

correlation

R-OB 0.96 0.79 0.73 (61/84)

R-OA1 0.96 0.81 0.62 (52/84)

R-OA2 0.96 0.78 0.73 (61/84)

OB-OA1 0.96 0.91 0.75 (63/84)

OB-OA2 0.99 0.95 0.88 (74/84)

OA1-OA2 0.98 0.91 0.82 (69/84)

0.97 (AA-ICC) 0.89 (AA-ICC)AI-OA2

0.97 (C-ICC) 0.75 (C-ICC)

0.80 (67/84)

AI: Artificial intelligence; AA-ICC: Absolute agreement interclass correlation coefficient; C-ICC: Consistency interclass correlation coefficient; ICC: 
Interclass correlation coefficient; OA1, OA2, OB: Orthopedic surgeons; R: Musculoskeletal radiologist.

Figure 7 Bland-Altman plots illustrating the differences between measurements achieved by our algorithm (AI) and orthopedic surgeon 
(OA2). A: Hallux valgus angle measurements; B: Intermetatarsal angle measurements.
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Coughlin et al[19] found that only 83.8% of IMA measurements made by physicians were within 3 degrees of 
concordance. AI overcomes the issue of clinician intra-observational and inter-observational reliability in terms of 
repeatable angular measurements of HV[46].

Considering that collecting a dataset of radiograms of patients with HV who were subsequently operated is not easy, 
we decided to rely on HV measurements on the segmented bones. Our initial research demonstrated that such an 
approach permits achieving better accuracy of HVA/IMA measurements on limited numbers of radiographs compared 
to key point-based ones. The difficulties associated with segmentation of proximal epiphyseal of 2MT bones due to 
anatomical overlap inclined us to apply a simplified segmentation with the exclusion of this bone area (Figure 5C). 
Consequently, the IMA measurements have an irrelevant bias (Figure 6B, Figure 7B).

Foot surgeons are aware that the decision to perform osteotomies or first tarsometatarsal joint (TMTJ) fusions (Lapidus 
procedure) depends on more than just HVA and IMA. Rather, it depends on the patients’ clinical picture, concomitant 
deformities of the foot such as lesser toe deformities, pes planus, metatarsus adductus, first TMTJ instability, the width of 
the 1st MT shaft, pronation of the first ray, presence of first metatarsophalangeal joint osteoarthritis, and the surgeons’ 
own skill level. The lateral view is also critical in evaluating the first TMTJ instability or presence of osteoarthritis which 
may necessitate a fusion rather than a 1st MT osteotomy. According to Lee et al[11] the HVA, IMA, interphalangeal angle, 
sesamoid rotation angle, and first metatarsal protrusion distance are worth measuring in HV considering three-
dimensional role in this deformity. Presently the above-mentioned requirements may limit the applicability of our 
method in some cases. Nonetheless, our algorithm establishes itself as a fast and clinically effective tool in the assessment 
of many HV cases. In order to fully automate preoperative HV planning, further research and development remain 
necessary.

In future work, more radiographs will be labeled to train more advanced U-Net to distinguish bones under challenging 
areas better. A multi-center database of radiographs should be created. Due to recent developments and a deeper 
understanding of pronation, enhanced segmentation and further research on manual and automatic estimation of the 
distal metaphyseal/diaphyseal 1MT reference point is necessary. We plan to train and evaluate different networks on our 
dataset, which will be extended to new images from other hospitals.

CONCLUSION
The proposed automated, AI-assisted determination of angles of hallux valgus based on deep learning is an accurate tool 
that produces measurements comparable to manual measurements performed by experienced clinicians in significantly 
less time. Automation can be used in clinical practice to determine angles of hallux valgus on X-ray images, classify the 
degree of deformity, and streamline preoperative decisions-making prior to HV surgery.

ARTICLE HIGHLIGHTS
Research background
Recent advances in artificial intelligence and deep learning has spurred innovations in medical imaging modalities, 
resulting in enhanced visualisation possibilities. Additionally, there is a growing interest in the automation of regular 
diagnostic procedures alongside orthopedic measurements.

Research motivation
So far, no reliable and automated method has been developed for measuring angles of foot bones in significant 
deformities of the big toe from radiographs according to AOFAS. Likewise, there is no system for automated preoperative 
decision-making.

Research objectives
The aim of our research was to develop a robust automated method for measuring angles of hallux valgus on radiographs 
according to AOFAS guidelines, to determine the accuracy of this method, to compare it against expert clinician 
measurements, and to develop a preoperative decision-making systems.

Research methods
The bones which are necessary to determine the angles of hallux valgus, obtained on anteroposterior weight-bearing feet 
radiograms were segmented by a U-Net. The bone axes were determined, and then the reference points for determining 
the hallux valgus angles (HVA) and intermetatarsal angles (IMA) were found. The interclass correlation coefficient and 
standard error for single measurements were used to calculate the agreement between manual and automatic measure-
ments. Finally, the correlation between the decisions of our algorithm and clinical adjudication for preoperative planning 
of hallux valgus was investigated.

Research results
The key foot bones were segmented from anteroposterior feet radiograms by the U-Net neural network with high 
accuracy (average Sørensen–Dice index larger than 97%). Such a precise segmentation enabled the accurate determination 
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of bone axes and the required reference points. Excellent agreement was achieved between manual and automated 
measurements of both angles. For HVA, absolute agreement interclass correlation coefficient (AA-ICC) and consistency 
ICC (C-ICC) were 0.97, and standard error of measurement (SEM) was 0.32. For IMA, AA-ICC was 0.75, C-ICC was 0.89, 
and SEM was 0.21. The proposed hallux valgus treatments based on HVA and IMA measured automatically correlated 
well with those proposed by orthopedic surgeons performing manual angle measurements.

Research conclusions
The proposed artificial intelligence powered automation for evaluating angles of hallux valgus through deep learning is a 
precise, yielding measurements akin to those conducted manually by experienced clinicians. This offers promising 
clinical applications such as facilitating the automated determination of angles of hallux valgus from X-ray images, 
categorizing the extent of deformity, and recommending a specific protocol for corrective surgery.

Research perspectives
Future research will focus on automating the measurements of remaining angles and parameters of forefoot deformation 
along its greater clinical implementation to further enhance diagnostic accuracy and improve patient outcomes.
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