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Abstract
BACKGROUND 
Liver transplantation (LT) is a life-saving intervention for patients with end-stage 
liver disease. However, the equitable allocation of scarce donor organs remains a 
formidable challenge. Prognostic tools are pivotal in identifying the most suitable 
transplant candidates. Traditionally, scoring systems like the model for end-stage 
liver disease have been instrumental in this process. Nevertheless, the landscape 
of prognostication is undergoing a transformation with the integration of machine 
learning (ML) and artificial intelligence models.

AIM 
To assess the utility of ML models in prognostication for LT, comparing their per-
formance and reliability to established traditional scoring systems.

METHODS 
Following the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis guidelines, we conducted a thorough and standardized literature search 
using the PubMed/MEDLINE database. Our search imposed no restrictions on 
publication year, age, or gender. Exclusion criteria encompassed non-English stu-
dies, review articles, case reports, conference papers, studies with missing data, or 
those exhibiting evident methodological flaws.

RESULTS 
Our search yielded a total of 64 articles, with 23 meeting the inclusion criteria. 
Among the selected studies, 60.8% originated from the United States and China 
combined. Only one pediatric study met the criteria. Notably, 91% of the studies 
were published within the past five years. ML models consistently demonstrated 
satisfactory to excellent area under the receiver operating characteristic curve 
values (ranging from 0.6 to 1) across all studies, surpassing the performance of 
traditional scoring systems. Random forest exhibited superior predictive capa-
bilities for 90-d mortality following LT, sepsis, and acute kidney injury (AKI). In 
contrast, gradient boosting excelled in predicting the risk of graft-versus-host 
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disease, pneumonia, and AKI.

CONCLUSION 
This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT, 
marking a significant evolution in the field of prognostication.

Key Words: Liver transplantation; Machine learning models; Prognostication; Allograft allocation; Artificial intelligence

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This systematic review highlights the promising role of machine learning (ML) models in improving prognost-
ication for liver transplantation (LT). ML models consistently outperformed traditional scoring systems, demonstrating 
excellent predictive capabilities for various post-transplant complications, including mortality, sepsis, and acute kidney 
injury. The findings underscore the potential of ML in enhancing decision-making related to organ allocation and LT, repres-
enting a substantial advancement in prognostication methods.

Citation: Chongo G, Soldera J. Use of machine learning models for the prognostication of liver transplantation: A systematic review. 
World J Transplant 2024; 14(1): 88891
URL: https://www.wjgnet.com/2220-3230/full/v14/i1/88891.htm
DOI: https://dx.doi.org/10.5500/wjt.v14.i1.88891

INTRODUCTION
Liver transplantation (LT) has long been a transformative intervention for individuals afflicted with acute and chronic-
end-stage liver ailments. In addition to restoring patients' health, LT can enhance their overall well-being and potentially 
extend their lifespan by up to 15 years[1]. This treatment approach is firmly established as a last resort when alternative 
methods and therapies have proven ineffective. According to the Scientific Registry of Transplant Recipients in the 
United States, the survival rates for patients after deceased donor LT are commendable, standing at approximately 90% at 
one year and 77% at five years post-LT[2]. Nevertheless, the field of LT confronts a range of challenges, encompassing can
-didate selection, organ allocation, and a scarcity of donor organs.

The persistent scarcity of donor organs has emerged as a critical and ongoing concern. While living donation has 
bolstered liver transplant numbers in some regions, in others, the field has stagnated. Consequently, there has been a 
concerted effort over the past decade to augment the pool of deceased donors. This endeavor has led to increased 
utilization of liver allografts obtained after cardiac death (DCD), as well as those from marginal and extended donor 
criteria[3]. Despite these improvements, a notable number of DCD livers remain unused due to suboptimal allograft 
function and unacceptable donor parameters. This predicament has given rise to the concept of mechanical perfusion for 
solid organ transplantation, aiming to expand the available organ pool, particularly for liver allografts, further under-
scoring the significant scarcity of this vital resource for transplantation[4].

A recent study emphasized the multifaceted challenges inherent to LT. In 2017, the United States recorded a waiting 
list of 14360 candidates eagerly awaiting LT[5]. Furthermore, the study reported an average hospital expenditure 
exceeding $490000 per patient associated with LT in 2011[5]. Evidently, there is an escalating demand for a more efficient 
system of liver organ allocation to optimize outcomes within a society grappling with diminishing liver organ donations 
and escalating expenditures linked to the care of end-stage liver disease patients.

The allocation of liver allografts to patients in need has relied on various scoring tools. Initially, Child-Turcotte-Pugh 
(CTP) score served this purpose, but the Model for End-stage Liver Disease (MELD) has now become the preferred score 
for organ allocation. Additionally, several other scoring systems, such as survival outcomes following LT (SOFT), balance 
of risk (BAR), donor risk index (DRI), age, bilirubin, international normalized ratio (INR), and creatinine (ABIC), chronic 
liver failure (CLIF)-Consortium Organ Failure scoreC OFs (CLIF-C OFs), CLIF-Consortium score for Acute on Chronic 
Liver Failure (CLIF-C ACLFs), and CLIF-Sequential Organ Failure Assessment score (SOFA), have been employed in this 
context.

The CTP score, initially validated for predicting postoperative mortality in cirrhotic patients, incorporates clinical and 
biochemical data, including serum albumin, serum bilirubin, INR or prothrombin time, ascites, and encephalopathy, to 
assess the prognosis of end-stage liver disease. The total Child-Pugh (CP) score is calculated by assigning points to each 
variable, with a maximum score of 15 points (Supplementary Table 1). CP class A corresponds to a score of 5-6 points, 
with a 10% mortality rate. CP class B corresponds to a score of 7-9 points, with a 30% mortality rate, while CP class C 
repre-sents a score of 10-15 points, associated with a poorer prognosis, including a 50% mortality rate at one-to-five years 
and sometimes as high as 70%-80%[6-8].

However, the use of CTP for liver transplant allocation had significant limitations. It relied on subjective assessments of 
ascites and encephalopathy, lacked an evaluation of renal function, and had a limited scoring range, making it 
challenging to differentiate patients based on disease severity. This limitation was evident when patients with different 
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INR and bilirubin levels were assigned the same CTP score, potentially leading to misleading prioritization[9]. Other 
drawbacks of the CTP score include the empirical selection of variables and the interdependence of some variables, such 
as coagulation and albumin, which could result in an imbalance in their influence within the score.

The CTP score's arbitrary cutoffs for quantitative variables lack evidence of optimality in defining hepatic changes and 
mortality risk, hindering its reliability in predicting prognosis in liver cirrhosis and post-LT[10]. Conversely, MELD score, 
originally designed for predicting survival after trans-jugular intrahepatic Porto-systemic shunt procedures, has been 
extended to assess prognosis in liver cirrhosis and serves as a tool for liver organ allocation[11]. MELD score's has a good 
reliability in predicting 1-year and 5-year survival across diverse liver diseases, including alcoholic cirrhosis and hepatitis
[12]. Additionally, MELD score has prognostic value in conditions like spontaneous bacterial peritonitis, variceal 
bleeding, and hepatorenal syndrome (HRS)[13]. In cases of variceal bleeding, the MELD score's predictive ability was 
comparable to the CTP score. Concerning HRS, a high MELD score (> 20) has been linked to a median survival of just 1 
mo for type 1 HRS, while type 2 HRS patients' survival correlated with their MELD score, with a median survival of 3 mo 
for MELD > 20 and 11 mo for MELD < 20[14]. To enhance its predictive power, the MELD score has evolved into multiple 
versions, including MELD sodium (MELD NA) and Delta MELD (D-MELD).

MELD NA, developed due to the observation of dilutional hyponatremia in cirrhotic patients, stems from systemic 
arterial vasodilation-induced antidiuretic hormone release, which was linked to portal hypertension severity[15]. Hypon-
atremia indirectly contributes to portal hypertension, leading to complications like ascites, HRS, and liver-related 
mortality[16]. Neurologic dysfunction, refractory ascites, HRS, and liver disease-related death are also associated with 
hyponatremia[17]. Numerous studies affirm hyponatremia as an independent predictor of early mortality, with the most 
pronounced impact between sodium concentrations of 120 to 135 mEq/L. A 1 mEq/L decrease corresponds to a 12% 
reduction in 3-month survival probability. Adding sodium to the MELD score enhances its predictive accuracy, especially 
for lower MELD scores. However, this addition doesn't significantly improve survival prediction at 3 and 12 mo and has 
its limitations due to fluctuating serum sodium levels influenced by various factors[18,19].

The D-MELD was introduced to address the limitation of a single MELD score at a specific time. While it is useful in 
predicting survival in cirrhotic patients awaiting transplantation, conflicting evidence exists. The potential bias in 
frequent laboratory testing for acutely worsening patients also complicates its use[20,21]. In summary, all versions of the 
MELD score have limitations, including susceptibility to therapeutic interventions, empirical variable selection, limited 
predictive ability for post-transplant mortality, and the need for on-site computation[10].

To improve the prediction of post-liver transplant mortality, various prediction tools have been explored, including the 
DRI, eurotransplant-donor risk Index (ET-DRI), SOFT, pre-allocation SOFT (p-SOFT), BAR, ABIC, CLIF C OFs, CLIF-C 
ACLFs, and the CLIF-SOFA. The DRI, predating the MELD score, was initially considered as an independent predictor of 
allograft failure across different MELD categories. However, numerous studies have revealed its limited association with 
outcomes[22]. The DRI's limitations include its validation in the pre-MELD era, the absence of recipient-related risk 
factors as the fact that is impractical for predicting morbidity and graft failure due to its poor predictive ability, inclusion 
of irrelevant factors (e.g., ethnicity), and omission of relevant factors[23].

The ET-DRI replaces ethnicity and height risk factors with parameters like the latest gamma-glutamyl transferase and 
rescue offer in the Eurotransplant context. Although it has been shown to be potentially useful for liver allocation, studies 
have consistently shown its limited predictive ability for early post-transplant outcomes[22-26]. Overall, the ET-DRI is 
consistently considered an unreliable tool for predicting morbidity and mortality after LT.

Various prediction tools have been explored to enhance post-liver transplant prognostication. The SOFT score 
(Supplementary Table 2) has been tested for predicting 90-d post-transplant mortality[22,27]. A derivative of SOFT, the p-
SOFT score (Supplementary Table 3), exhibited promising predictive accuracy[22]. However, the complexity of these 
scores, which involve multiple subjective and semi-quantitative variables, hampers their prompt clinical assessment and 
decision-making. Furthermore, their predictive ability for major morbidity at 3 mo appears limited[22,28].

The BAR score (Supplementary Table 4) offers promise by evaluating both recipient and donor factors for severe 
complications and 90-d mortality[22,28]. This tool has shown robustness in various patient populations, including 
pediatric, adolescent, and living donor liver transplant recipients[29,30]. However, in specific patient subgroups, BAR's 
accuracy in assessing short-term outcomes, including major complications, 90-d mortality, and ICU and hospital stay 
length, may be suboptimal[22].

The ABIC score (Supplementary material) aim to predict outcomes in patients with alcoholic hepatitis. While it has 
shown potential, its validation has been inconsistent, and it may not be widely applicable. Additionally, it primarily 
assesses the risk of wait-time mortality, making it unsuitable for post-liver transplant mortality assessment[31,32].

The CLIF-SOFA score (Supplementary Table 5), a modified version of the SOFA, is tailored for end-stage liver disease 
patients. This adaptation replaces platelet count and Glasgow coma scale with INR and hepatic encephalopathy, 
respectively. Additionally, it incorporates terlipressin and renal replacement therapy into cardiovascular and renal 
parameters, respectively, and includes SpO2/FiO2 as an alternative respiratory parameter for patients without an arterial 
line[33].

In a study published in 2014, the CLIF-SOFA score proved to be a significant predictor of 1-year post-LT mortality, 
surpassing the SOFA score in discriminatory power on several post-transplant days[34]. CLIF-SOFA score exhibited 
greater numerical differences between 1-year survivor and non-survivor groups, especially post-LT. Furthermore, CLIF-
SOFA score trends reflected patients' responses to therapeutic strategies, with a CLIF-SOFA score > 8 on post-transplant 
day 7 indicating delayed recovery from multiple organ dysfunction, associated with higher acute rejection rates and 
poorer 1-year survival rates.

The CLIF-C OFs, a simplified version of CLIF-SOFA, uses a 3-point range per organ system and performs similarly to 
CLIF-SOFA, outperforming SOFA[35]. This score has proven to be an excellent prognostic tool for short-term outcomes in 
LT. Another variation, the CLIF-C ACLFs (Supplementary material), designed for acute-on-chronic liver failure (ACLF) 
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patients, includes the CLIF-SOFA score, age, and white-cell count. Jalan et al[35] demonstrated the superiority of the 
CLIF-ACLF score in terms of performance compared to CLIF-SOFA and CLIF-C OFs scores. However, inferior per-
formance of CLIF-ACLF compared to CLIF-SOFA has been reported[34]. Results of CLIF-SOFA, CLIF-C[36-39] and ACLF 
classification[40-43] has been conflicting[7].

In response to the limitations of existing prognostic scores, there is a growing interest in harnessing machine learning 
(ML) models and algorithms to enhance the prediction of outcomes in LT. ML models serve as a bridge between organ 
allocation and achieving optimal results, capitalizing on the increasing use of artificial intelligence (AI) in medicine over 
the past decade (Figure 1). ML algorithms, as illustrated in Figure 2, rely on various types of input data, including 
structured, semi-structured, and unstructured data. Structured data, characterized by well-defined formats and 
adherence to specific data models, is organized in a tabular fashion and includes information like names, dates, and 
addresses. Semi-structured data, found in NoSQL databases, JSON documents, HTML, and XML, possesses organiza-
tional properties that enable analysis. On the other hand, unstructured data, comprising text and multimedia materials 
from sources like emails, sensor data, and web pages, lacks predefined formats, making it more challenging to process 
and analyze. To extract valuable insights from data for building intelligent applications in specific problem domains, 
various ML techniques are applied based on their learning capabilities[44]. Mohammed et al[45] categorized ML 
algorithms into four main groups: Supervised, unsupervised, semi-supervised, and reinforcement learning (Supple-
mentary Table 6). Supervised learning involves mapping input to output based on labeled training data, typically used 
for tasks like classification and regression. Unsupervised learning, on the other hand, analyzes unlabeled datasets 
without human intervention and is employed for tasks such as clustering and dimensionality reduction, focusing on 
extracting generative features and identifying meaningful trends.

In the realm of ML, several techniques are employed to enhance predictive models for various applications, including 
LT prognostication. One such technique is semi-supervised learning, which effectively leverages both labeled and 
unlabeled data to achieve improved prediction outcomes, especially when labeled data is limited. This approach plays a 
crucial role in bridging the gap between supervised and unsupervised learning methods, finding utility in domains such 
as machine translation, data labeling, and text classification[46].

Reinforcement learning, on the other hand, offers a distinct approach by focusing on environment-driven algorithms 
that enable software agents and machines to autonomously evaluate optimal behavior within specific contexts. This 
methodology relies on the concept of rewards and penalties, aiming to utilize insights gained from interactions with the 
environment to maximize rewards or minimize risks. While reinforcement learning possesses significant potential in 
training AI models, it is better suited for complex scenarios rather than straightforward problems[47].

Within the realm of classification algorithms, several notable methods find application in health-related domains. 
Logistic regression (LR) stands as a commonly used technique, relying on logistic functions to estimate probabilities. 
While LR can excel in linearly separable datasets, it may suffer from overfitting in high-dimensional scenarios. Regular-
ization techniques like L1 and L2 regularization are often employed to mitigate this issue[46].

Support vector machine (SVM) is another prominent classification method with applications in health data. SVM 
operates in high-dimensional spaces by constructing hyperplanes that maximize the margin between data points in 
different classes. The choice of kernel functions, such as polynomial, linear, radial basis function, and sigmoid, sig-
nificantly influences SVM's performance. However, SVM's efficacy can diminish in the presence of noisy datasets and 
overlapping target classes[46].

Random forest (RF) offers a distinct ensemble classification technique, widely used in ML and data science applic-
ations. RF employs parallel ensembling, training multiple decision tree classifiers on different data subsets and combining 
their outcomes through averaging or majority voting. This approach effectively addresses overfitting concerns and 
enhances prediction accuracy, making it suitable for both continuous and categorical data in classification and regression 
problems[40].

Additionally, Adaptive Boosting (AdaBoost) serves as a valuable classification algorithm in the realm of health data. It 
adopts a sequential ensembling approach to improve the performance of weak classifiers by learning from their errors. By 
combining multiple underperforming classifiers, AdaBoost creates a robust classifier with high accuracy, boosting the 
performance of decision trees, base estimators, and binary classification tasks. However, it's essential to note that 
AdaBoost can be susceptible to overfitting and sensitivity to noisy data and outliers[48].

These various ML techniques have been instrumental in addressing complex problems in health-related domains, 
including LT prognostication. However, they also come with their own set of challenges, such as overfitting and 
interpretability issues. Therefore, periodic reviews are crucial to evaluate their performance and reliability compared to 
traditional scoring methods. This study aims to conduct a systematic review of observational studies, assessing the effect-
iveness of ML models in LT prognostication and comparing their performance with established scoring systems.

Extreme gradient boosting (XGBoost) stands out as a prominent classifier, belonging to the ensemble learning 
algorithm family, akin to RF. XGBoost represents a specific variant of gradient boosting that intricately considers detailed 
approximations when determining the optimal model. It effectively addresses overfitting concerns by minimizing the loss 
function and employing advanced regularization techniques, including L1 and L2 regularization. These regularization 
methods are implemented through the computation of second-order gradients of the loss function, resulting in enhanced 
model generalization and performance[48].

In the domain of ML, artificial neural networks (ANN) and deep learning techniques hold significant sway. Deep 
learning, a subset of ANN-based approaches, encompasses representation learning and comprises multiple layers, 
including input, hidden, and output layers. These layers collaboratively facilitate learning from data, giving rise to a 
computational architecture that excels, particularly when dealing with large datasets. Notable deep learning algorithms 
encompass multilayer perceptron, long short-term memory recurrent neural network, convolutional neural network, and 
ConvNet, among others[49].
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Figure 1 Machine learning popularity: Worldwide popularity score of different types of machine learning algorithms. Popularity scores range 
from 0 (minimum) to 100 (maximum) and are plotted against the timestamp information on the x-axis. The y-axis represents the corresponding popularity score[44]. 
Citation: Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci 2021; 2: 160. Copyright ©The Author(s) 2021. 
Published by Springer Nature.

Figure 2 Basic machine learning model: Process of training and testing in machine learning[44]. Citation: Sarker IH. Machine Learning: 
Algorithms, Real-World Applications and Research Directions. SN Comput Sci 2021; 2: 160. Copyright ©The Author(s) 2021. Published by Springer Nature.

ML demonstrates versatility by not only addressing diagnostic challenges but also serving as a valuable tool in prog-
nostic applications. It proves beneficial in disease prediction, data pattern identification, extraction of medical insights, 
and patient management[50]. Nevertheless, ML models are not without their limitations, as highlighted earlier. Concerns 
encompass overfitting, interference phenomena, where new data may disrupt previous learning, and the black box 
dilemma, which pertains to the challenge of explaining model results[51].

Within the context of LT, ML models have garnered increasing attention, underscoring the need for periodic 
assessments of their reliability and performance compared to conventional scoring systems. To this end, this study 
endeavors to conduct a systematic review of observational studies. The objective is to comprehensively evaluate the 
evidence concerning the deployment of ML models for prognostication in LT. This evaluation encompasses an 
assessment of their performance and reliability, juxtaposed with the array of traditional scoring systems currently avai-
lable.

MATERIALS AND METHODS
Methods
This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines to 
ensure a standardized approach[52].

Search strategy
A comprehensive literature search was conducted using the PubMed/MEDLINE search engine by one researcher. The 
search strategy included the following terms: ("ML" OR "AI") AND ("LT" OR "Allograft liver") AND ("Prognosis" OR 
"Mortality" OR "Prognostication"). A reference manager tool, Zotero, was utilized for sorting and managing references.
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Study selection
All observational studies discussing ML models and prognosis of LT, regardless of the year of publication, age, or sex, 
were included. Studies written in English were considered. Additionally, studies examining ML models and the risk of 
post-transplant complications were included, as these complications often contribute to transplant failure or mortality. 
Exclusion criteria encompassed non-English papers, review articles, case reports, conference articles, studies with missing 
data, or studies with evident methodological flaws.

Data extraction and synthesis
The systematic search was conducted by one reviewer, who screened the potential studies based on their titles and 
abstracts. Full-text versions of eligible studies were obtained and thoroughly analyzed for content and methodology.

A summary of the included studies was created, providing a narrative overview of each paper's objectives, methods, 
results, and conclusions. After reviewing the full papers, data on various elements was extracted including; study type, 
population studied and year of study, purpose of the study, setting of the study, its methods and results, conclusion, 
limitations and strengths of the study as well as a summary of the study. Additionally, if reported by the studies, a com-
parison was made between traditional scores and algorithms vs ML models. This analysis aimed to explore the 
performance and effectiveness of ML approaches in prognosing LT outcomes.

By systematically extracting relevant information from the selected studies, a comprehensive understanding of the role 
of AI in LT prognosis was obtained. The data synthesis process involved organizing and presenting the findings in a 
coherent manner, allowing for a comprehensive evaluation of the current literature in this field.

This approach enabled to examine the various methodologies employed in the studies, identify key trends, and 
evaluate the potential benefits and limitations of using ML models for prognostication in LT. The synthesized data from 
the included studies will contribute to providing valuable insights into the current state of research on the role of AI in 
predicting outcomes in LT.

RESULTS
Using the predetermined search strategy, a total of 64 references were initially identified. Among these, 7 references were 
excluded as they were conference articles or review papers. Additionally, 1 duplicate article was removed, and 8 articles 
were excluded as they were abstracts only and could not be accessed for full-text reading. Subsequently, a thorough 
evaluation of the remaining 48 articles was conducted through full-text reading and content analysis. Following the 
comprehensive assessment, 23 studies met the inclusion criteria and were included in the final analysis. The selection 
process and reasons for exclusion of certain studies are visually represented in Figure 3, which depicts the flowchart 
illustrating the search strategy employed. Table 1, summarizes the findings of every study included[53-74].

Quality assessment
The majority of the included studies were considered to be of good quality, despite being observational in nature and not 
appraised using any specific quality assessment tool. Many of these studies incorporated validation sets in their analyses, 
which contributes to the robustness of their findings.

Study outcomes: The studies assessed in this systematic review covered a range of transplantation reasons, including 
ACLF from various causes, primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC). Among the 23 
studies analyzed, the highest number (8 studies, accounting for 34.8%) were conducted in America, followed by 6 studies 
(26%) from China. Additionally, 2 studies (8.7%) were from Korea, while the remaining studies originated from Spain, 
Australia, Portugal, Taiwan, Iran, and Brazil, each contributing 1 study (4.3%). Furthermore, there was one multinational 
study involving participants from the United States, Canada, and the United Kingdom, which represented 4.3% of the 
total sample as depicted by Figure 4.

The studies analyzed in this review spanned from 2014 to 2023. Notably, the highest proportion of studies (26%, 6 
studies) were published in 2021, followed by 5 studies (21.7%) from 2022. Studies from 2019, 2020, 2018, and 2023 
accounted for 13% (3 studies) each, while 2014 and 2015 each contributed 1 study (4.3%) as shown in Figure 5. Regarding 
the age of participants, one study involved individuals under 18 years old, while the remaining 22 studies focused on 
adults aged 18.

Primary outcomes and findings
The primary outcomes of interest in the included studies were mortality and the emergence of complications post liver 
transplant. Most of the studies reported the receiver operating characteristic (ROC) curve and used the area under the 
ROC curve (AUROC) as a measure of predictive performance. AUROC values were categorized as excellent (0.9-1), very 
good (0.8-0.9), good (0.7-0.8), satisfactory (0.6-0.7), and unsatisfactory (0.5-0.6) based on previous classification[75].

Across all the studies, ML algorithms and models were developed using pre-transplant donor and/or recipient 
variables. Short-term mortality predictions were typically up to 90 d, while long-term predictions extended up to 5 years. 
Analysis of AUROC demonstrated that ML models consistently yielded satisfactory to excellent results in predicting 
short and long-term mortality or the risk of complications post liver transplant.

Furthermore, the AUROC analysis revealed that ML models outperformed traditional models and scoring systems, 
including commonly used models such as MELD, D-MELD, SOFT, P-SOFT, BAR, DRI score, ABIC, CLIF-C OFs, CLIF-C 
ACLFs, and CLIF SOFA. Additionally, ML models showed superiority over models based on Cox and LR. Detailed 
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Table 1 Summary table of included studies

Ref. Context Aim Methods Results Conclusion

Briceño et al[53], 2014 A Spanish study using a two-fold 
ANN model which included, the 
positive survival and the negative 
loss models  were implored to 
predict  3 mo graft survival post LT

To test the accuracy of ANN 
inpredicting post-transplant 
outcomes and compare with other 
conventional models

Sixty-four donor and recipient 
variables from a set of 1003 LT from 
a multicenter study including 11 
Spanish centers were included. For 
each D-R pair, common statistics 
(simple and multiple regression 
models) and ANN formulae for two 
non-complementary probability-
models of 3-months graft-survival 
and -loss were calculated: a positive-
survival (NN-CCR) and a negative-
loss (NN-MS) model. The NN 
models were obtained by using the 
Neural Net Evolutionary 
Programming (NNEP) algorithm. 
Additionally, receiver-operating 
curves (ROC) were performed to 
validate ANN against other scores

Optimal results for NN-CCR and 
NN-MS models were obtained, with 
the best performance in predicting 
the probability of graft-survival 
(90.79%) and -loss (71.42%) for each 
D-R pair, significantly improving 
results from multiple regressions. 
ROC curves for 3- months graft-
survival and –loss predictions were 
significantly more accurate for ANN 
than for other scores in both NN-
CCR (AUROC-ANN = 0.80 vs 
–MELD = 0.50; -D-MELD = 0.54; -P- 5 
SOFT = 0.54; -SOFT = 0.55; –BAR = 
0.67 and -DRI = 0.42) and NN-MS 
(AUROC-ANN = 0.82 vs – MELD = 
0.41; -D-MELD = 0.47; -P-SOFT = 
0.43; -SOFT = 0.57, -BAR = 0.61 and -
DRI = 0.48)

ANN maybe considered a powerful 
decision-making technology for this 
dataset, optimizing the principles of 
justice, efficiency and equity. This 
may be a useful tool for predicting 3-
months outcome and a potential 
research area for future D-R 
matching models

Ershoff et al[54], 2020 An American study in which DNN 
was trained on pre transplant data 
and compared with the BAR and 
SOFT scores  in predicting 90-d 
mortality post LT

The primary aim of the study was to 
classify recipients with 90-d post-
liver transplant mortality using 
DNNs

In this study, we trained a DNN to 
predict 90-d post -transplant 
mortality using preoperative 
variables and compared the 
performance to that of the Survival 
Outcomes Following Liver 
Transplantation (SOFT) and Balance 
of Risk (BAR) scores, using United 
Network of Organ Sharing data on 
adult patients who received a 
deceased donor liver transplant 
between 2005 and 2015 (n = 57544). 
The DNN was trained using 202 
features, and the best DNN’s 
architecture consisted of 5 hidden 
layers with 110 neurons each

The area under the receiver 
operating characteristics curve 
(AUC) of the best DNN model was 
0.703 (95%CI: 0.682-0.726) as 
compared to 0.655 (95%CI: 0.633-
0.678) and 0.688 (95%CI: 0.667-0.711) 
for the BAR score and SOFT score, 
respectively 

Despite the complexity of DNN, it 
did not achieve a significantly higher 
discriminative performance than the 
SOFT score. Future risk models will 
likely benefit from the inclusion of 
other data sources, including high-
resolution clinical features for which 
DNNs are particularly apt to 
outperform conventional statistical 
methods

Donor risk index predicts the 
outcome with an area under the 
receiver operating characteristic 
curve (AUC-ROC) value of 0.680 
(95%CI: 0.669-0.690). The 
combination of the factors used in 
donor risk index with the model for 
end-stage liver disease score yields 
an AUC-ROC of 0.764 (95%CI: 0.756-
0.771), whereas survival outcomes 
after liver transplantation (LT) score 
obtains an AUC-ROC of 0.638 
(95%CI: 0.632-0.645). The top 15 
donor and recipient characteristics 

Lau et al[55], 2015 An Australian study proposing an 
algorithm made from 15 donor, 
recipient and transplant factors 
selected by ML predicting mortality 
within 30 days after LT

To evaluate the utility of machine-
learning algorithms, such as random 
forests and artificial neural networks, 
to predict outcome based on donor 
and recipient variables which are 
known before organ allocation

Liver transplant data from the 
Austin Hospital, Melbourne, 
Australia, from 2010 to 2013 has been 
included in the study. The top 15 
donor, recipient, and transplant 
factors influencing the outcome of 
graft failure within 30 days were 
selected using a machine learning 
methodology. An algorithm 
predicting the outcome of interest 
was developed using those factors

This study confirms that machine-
learning algorithms based on donor 
and recipient variables which are 
known before organ allocation can 
be utilized to predict transplant 
outcomes
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within random forests results in an 
AUC-ROC of 0.818 (95%CI: 0.812-
0.824)

Liu et al[56], 2020 A Chinese study using ML to predict 
30 d survival after LT

To use data-driven technique to 
develop a predictive model using 
ML to predict postoperative survival 
within 30 days for the patients who 
have undergone LT

We use random forest (RF) to select 
important features, including 
clinically used features and new 
features discovered from 
physiological measurement values. 
Moreover, we propose a new 
imputation method to deal with the 
problem of missing values and the 
results show that it outperforms the 
other alternatives. In the predictive 
model, we use patients’ blood test 
data within 1–9 d before surgery to 
construct the model to predict 
postoperative patients’ survival

The experimental results on a real 
data set indicate that RF outperforms 
the other alternatives. The experi-
mental results on the temporal 
validation set show that our 
proposed model achieves AUC of 
0.771 and specificity of 0.815

ML can detect the high risk patients 
in early phase after LT, and discover 
important factors that are essential in 
LT

Yang et al[57], 2022 A Chinese study in which conven-
tional Scoring systems were 
compared with ML models in 
predicting 90 day survival in ACLF 
patients following LT

To compare the predictive value of 
conventional models and ML models 
for predicting 90-d post-transplant 
survival of ACLF patients based on 
preoperative variables

Preoperative data of 132 ACLF 
patients receiving LT at our center 
were investigated retrospectively. 
Cox regression was performed to 
determine the risk factors for short-
term survival among ACLF patients 
following LT. Five conventional 
score systems (the MELD score, 
ABIC, CLIF-C OFs, CLIF-SOFAs and 
CLIF-C ACLFs) in forecasting short 
term survival were estimated 
through the ROC. Four machine-
learning (ML) models, including 
support vector machine (SVM), 
logistic regression (LR), multi-layer 
perceptron (MLP) and random forest 
(RF), were also established for short-
term survival prediction

Cox regression analysis 
demonstrated that creatinine (Cr) 
and international normalized ratio 
(INR) were the two independent 
predictors for short-term survival 
among ACLF patients following LT. 
The ROC curves showed that the 
AUC ML models was much larger 
than that of conventional models in 
predicting short term survival. 
Among conventional models the 
model for end stage liver disease 
(MELD) score had the highest AUC 
(0.704), while among ML models the 
RF model yielded the largest AUC 
(0.940). (AUROC) of MELDs 
(AUROC: 0.704) was higher than 
those of ABIC (AUROC: 0.607), 
CLIF-C OFs (AUROC: 0.606), CLIF-C 
ACLFs (AUROC: 0.653), and CLIF-
SOFAs (AUROC: 0.633) for 
prediction of the 90-d outcome in 
ACLF patients following LT

Compared with the traditional 
methods, the ML models showed 
good performance in the prediction 
of short-term prognosis among 
ACLF patients following LT and the 
RF model perform the best

The learned PSSP model showed an 
excellent D-calibration (P = 1.0), and 
passed the single-time calibration 
test (Hosmer-Lemeshow P value of 
over 0.05) at 0.25, 1, 5 and 10 yr. In 
contrast, the model based on 
traditional Cox regression showed 
worse calibration on long-term 
survival and failed at 10 yr (Hosmer-
Lemeshow P value = 0.027). 
The overall KM survival curve at 
0.25, 1, 3, 5 and 10-yr showed 
survival probabilities of: 95.6%, 93%, 

Andres et al[58], 2018 A United States study using ML to 
construct a prediction tool called 
PSSP using SRTR data to predict 
survival following LT for PSC and 
compared with cox regression in 
survival analysis

To develop  ML models to predict 
individual survival after LT for 
Primary Sclerosing Cholangitis (PSC)

We applied a software tool, PSSP, to 
adult patients in the Scientific 
Registry of Transplant Recipients (n 
= 2769) who received a LT for PSC 
between 2002 and 2013; this 
produced a model for predicting 
individual survival distributions for 
novel patients. We also developed an 
appropriate evaluation measure, D-
calibration, to validate this model

Our empiricalresults show that the 
individual survival distributions 
produced by these models are well 
calibrated, which means they can be 
used for this screening task of 
deciding whether a candidateshould 
be added to the LT waiting list as 
they can help predict the survival of 
a possible recipient (or of a 
donor/recipient pair) 
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87.6%, 84.1% and 72%

Kong et al[59], 2020 A Chinese study in which Logistic 
regression and artificial neural 
network(ANN) analysis were used to 
determine the preoperative 
independent risk factors and 
protective factors for the survival or 
death of patients90 days after 
surgery

To develop a simple ML model for 
quick prediction of the short-term 
survival ofpatients after LT in the 
event that the donor's information is 
not available in advance

A total of 1495 adult patients 
underwent LT in the present study. 
Three-quarters of recipients were 
randomly selected into the test set (n 
= 1121), while the remaining 25% 
formed the validation set (n = 374). 
Univariate and multivariate analysis 
and machine-learning techniques 
were applied to evaluate possible 
influencing factors. To further 
simplify the model, a weighted-
scoring system was designed 
considering each influencing factor 
and its importance in an ANN

In the test set, multivariate analysis 
identified creatinine, age, and total 
bilirubin as independent risk factors, 
while albumin was an independent 
protective factor. Logistic regression 
analysis showed the C-statistic to be 
0.650, while ANN indicated this to 
be 0.698. We simplified the model to 
obtain the final scoring model, for 
which the C-statistic was 0.636, and 
defined four risk grades. The 90-d 
mortality rates corresponding to the 
four risk levels were 6.2%, 11.8%, 
24.0%, and 34.9%, respectively. In the 
validation set, the C-statistic value of 
the original model was 0.668 and 
that of the simplified model was 
0.647

We demonstrated that the 
postoperative 90-d mortality follow-
ingadult LT can be predicted using a 
scoring system based on recipients' 
preoperative characteristics

Bertsimas et al[60], 2019 An American study using Optimized 
prediction of mortality (OPOM) 
utilizing machine-learning optimal 
classification tree models trained to 
predict a candidate’s 3-months 
waitlist mortality or removal using 
the standard transplant analysis 
andresearch (STAR) dataset

To utilize a state-of-the-art machine-
learning method-termed optimal 
classification trees (OCTs)-to 
generatea more accurate prediction 
of a liver candidate’s 3-months wait-
list mortality or removal

An OPOM was developed (http://
www.opom.online) utilizing 
machine-learning optimal classi-
fication tree models trained to 
predict a candidate’s 3-months 
waitlist mortality or removal 
utilizing the STAR dataset. The Liver 
Simulated Allocation Model (LSAM) 
was then used to compare OPOM to 
MELD-based allocation. Out-of-
sample area under the curve (AUC) 
was also calculated for candidate 
groups of increasing disease severity

OPOM considerably outperformed 
both MELD variants when 
predicting the 3-months probability 
of dying or becoming unsuitable for 
transplant for all patients (0.859 vs 
0.841 for MELD-Na, and 0.823for 
Match MELD) and across all 
exception statuses. In addition, 
analysis of out-of-sample AUC for 
OPOM, Match MELD and MELD-
Na, for subpopulations of patients 
with increasing dis-ease severity, 
revealed a notable decline in 
predictive power for Match MELD 
and MELD-Na as disease severity 
increased, whereas OPOM’s 
predictive power was maintained. 
The largest divergence in predictive 
power between OPOM and MELD 
was at the higher disease severity 
brackets, with OPOM outperforming 
Match MELD by up to 16%

OPOM more accurately and 
objectively prioritizes candidates for 
LT based on disease severity, 
allowing for more equitable 
allocation of livers with a resultant 
sig- nificant number of additional 
lives saved every year. These data 
demonstrate the potential of machine 
learning technology to help guide 
clinical practice, and potentially 
guide national policy

Patients who received a LT for HCC 
between 2008-2019 were eligible for 
inclusion in the analysis. All patients 
with post-LT recurrence were 
included, and those without 
recurrence were randomly selected 
for inclusion in the deep learning 
model. Pre- and post-transplant 
magnetic resonance imaging (MRI) 
scans and reports were compressed 
using Caps Net networks and 
natural language processing, 

A total of 109 patients were included 
(87 in the training group, 22 in the 
testing group), of which 20 were 
positive for cancer recurrence. Seven 
models (AUC; F-1 score) were 
generated, including clinical features 
only (0.55; 0.52), MRI only (0.64; 
0.61), pathological images only (0.64; 
0.61), MRI plus pathology (0.68; 
0.65), MRI plus clinical (0.78, 0.75), 
pathology plus clinical (0.77; 0.73), 
and a combination of clinical, MRI, 

He et al[61], 2021 An American study using image 
omics and multi-network based deep 
learning model that converts 
expertise in LT, full-slide image 
digitization, and deep machine 
learning, and integrates 
multimodality data of quantitative 
image features with relevant clinical 
data to identify pre-clinical and 
biological markers for predicting 
good post-transplant outcomes, 
regardless of size

To develop a convergent artificial 
intelligence (AI) model that 
combines transient clinical data with 
quantitative histologic and radiomic 
features for more objective risk 
assessment of LT for HCC patient

We validated that the deep learning 
model combining clinical features 
and multi scale histopathologic and 
radiomic image features can be used 
to discover risk factors for recurrence 
beyond tumor size and biomarker 
analysis

http://www.opom.online
http://www.opom.online
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respectively, as input for a multiple 
feature radial basis function network. 
We applied a histological image 
analysis algorithm to detect 
pathologic areas of interest from 
explant tissue of patients who 
recurred. The multilayer perceptron 
was designed as a feed forward, 
supervised neural network topology, 
with the final assessment of 
recurrence risk. We used AUC and F-
1 score to assess the predictability of 
different network combinations

and pathology features (0.87; 0.84). 
The final combined model showed 
80% recall and 89% precision. The 
total accuracy of the implemented 
model was 82%

Pinto-Marques et al[62], 2022 A Portuguese study in which the ML 
model, Hepato-Predict was 
constructed on retrospective LT data 
for HCC based on the assessment of 
a gene expression signature plus 
clinical variables

To propose a new decision algorithm 
combining biomarkers measured in a 
tumor biopsy with clinical variables, 
to predict recurrence after LT

A literature systematic review 
singled out candidate biomarkers 
whose RNA levels were assessed by 
quantitative PCR in tumor tissue 
from 138 HCC patients submitted to 
LT (> 5 yr follow up, 32% beyond 
Milan criteria). The resulting 4 gene 
signature was combined with clinical 
variables to develop a decision 
algorithm using machine learning 
approaches. The method was named 
HepatoPredict

HepatoPredict identifies 99% 
disease-free patients (> 5 yr) 
including many outside clinical 
criteria (16%-24%). Has increased 
positive predictive value (88.5%-
94.4%) without any loss of long-term 
overall survival or recurrence rates 
for patients deemed eligible by 
HepatoPredict; those deemed 
ineligible display marked reduction 
of survival and increased recurrence 
in the short and long term

HepatoPredict outperforms conven-
tional clinical-pathologic selection 
criteria (Milan, UCSF), providing 
superior prognostic information

Lai et al[63], 2023 A Taiwanese study in which the ML 
model ResNet-18 was trained on 
FDG-PET-CT images to predict 
outcomes in HCC patients 
undergoing LT

To evaluate the performance of deep 
learning from 18F-FDG PET-CT 
images to predict overall survival in 
HCC patients before LT

We retrospectively included 304 
patients with HCC who underwent 
18F-FDG PET/CT before LT between 
January 2010 and December 2016. 
The hepatic areas of 273 of the 
patients were segmented by 
software, while the other 31 were 
delineated manually. We analyzed 
the predictive value of the deep 
learning model from both FDG 
PET/CT images and CT images 
alone

The results of the developed 
prognostic model were obtained by 
combining FDG PET-CT images and 
combining FDG CT images (0.807 
AUC vs 0.743 AUC). The model 
based on FDG PET-CT images 
achieved somewhat better sensitivity 
than the model based on CT images 
alone (0.571 SEN vs 0.432 SEN)

Our retrospective study indicated 
that an automated 3D ResNet-18 
convolutional neural network with 
FDG-PET-CT has promise for 
predicting clinical outcomes in 
patientswith HCC undergoing LDLT 
and that Automatic liver 
segmentation from 18F-FDG PET-CT 
images is feasible and can be utilized 
to train deep-learning models

Our study included 902 adults who 
received livers from deceased donors 
from March 2011 to March 2014 at 
the Shiraz Organ Transplant Center 
(Shiraz, Iran). In a 3-step feature 
selection method, effective features 
of 6-month survival were extracted 
by: (1) F statistics, Pearson chi-
square, and likelihood ratio chi-
square; (2) 5 machine earning 
techniques. To evaluate the 
performance of the machine-learning 
techniques, Cox regression was 
applied to the data set. Evaluations 
were based on the area under the 
receiver operating characteristic 

Kazemi et al[64], 2019 Iranian study aimed at modelling 
patient survival after LT using 
machine-learning methods to 
investigate influential factors and 
compare the performance of these 
methods with a classic statistic 
method, cox regression

To Identify effective factors for 
patient survival after LT using ML 
techniques

The model predicted survival based 
on 26 identified effective factors. In 
the following order, graft failure, 
Aspergillus infection, acute renal 
failure and vascular complications 
after transplant, as well as graft 
failure diagnosis interval, previous 
diabetes mellitus, Model for End-
Stage Liver Disease score, donor 
inotropic support, units of packed 
cell received, and previous recipient 
dialysis, were found to be predictive 
factors in patient survival. The area 
under the receiver operating charac-
teristic curve and model sensitivity 
were 0.90 and 0.81, respectively

Data mining analyses can help 
identify effective features of patient 
survival after livertransplant and 
build models with equal or higher 
performance than Cox regression. 
The order ofinfluential factors 
identified with the machine learning 
model was close to clinical 
experiments
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curve and sensitivity of models; and 
(3) We also constructed a model 
using all factors identified in the 
previous step

Nitski et al[65], 2021 An American study that examined 
retrospective data of transplant 
recipients from the SRTR and UHN 
to assess the role of deep learning 
algorithms to predict complications 
resulting in death after liver 
transplant over multiple time frames 
in comparison with logistic 
regression

To assess the ability of deep learning 
algorithms of longitudinal data from 
two prospective cohorts to predict 
complications resulting in death after 
LT over multiple timeframes, 
compared with logistic regression 
models

In this machine learning analysis, 
model development was done on a 
set of 42 146 liver transplant 
recipients [mean age 48.6 yr (SD 
17.3); 17 196 (40.8%) women] from 
the Scientific Registry of Transplant 
Recipients (SRTR) in the United 
States. Transferability of the model 
was further evaluated by fine-tuning 
on a dataset from the UHN in 
Canada [n = 3269; mean age 52.5 yr 
(11.1); 1079 (33.0%) women]. The 
primary outcome was cause of death, 
as recorded in the databases, due to 
cardiovascular causes, infection, 
graft failure, or cancer, within 1 yr 
and 5 yr of each follow-up 
examination after transplantation. 
We compared the performance of 
four deep learning models against 
logistic regression, assessing 
performance using the AUROC

In both datasets, deep learning 
models outperformed logistic 
regression, with the Transformer 
model achieving the highest 
AUROCs in both datasets (P < 
0.0001). The AUROC for the 
Transformer model across all 
outcomes in the SRTR dataset was 
0.804 (99%CI: 0.795-0.854) for 1-yr 
predictions and 0.733 (0.729-0.769) 
for 5-yr predictions. In the UHN 
dataset, the AUROC for the top-
performing deep learning model was 
0.807 (0.795-0.842) for 1-yr 
predictions and 0.722 (0.705–0.764) 
for 5-yr predictions. AUROCs ranged 
from 0.695 (0.680–0.713) for 
prediction of death from infection 
within 5 yr to 0.859 (0.847-0.871) for 
prediction of death by graft failure 
within 1 yr

Deep learning algorithms can 
incorporate longitudinal information 
to continuously predict long-term 
outcomes after LT, outperforming 
logistic regression models

We used data from 3 national 
registries and developed machine 
learning algorithm (MLA)–based 
models to predict 90-d post-LT 
mortality within and across 
countries. Predictive performance 
and external validity of each model 
were assessed. Prospectively 
collected data of adult patients (aged 
≥ 18 yr) who underwent primary LTs 
between January 2008 and December 
2018 from the Canadian Organ 
Replacement Registry (Canada), 
National Health Service Blood and 
Transplantation (United Kingdom), 
and United Network for Organ 
Sharing (United States) were used to 
develop MLA models to predict 90-d 
post-LT mortality. Models were 
developed using each registry 
individually (based on variables 
inherent to the individual databases) 
and using all 3 registries combined 
(variables in common between the 
registries [harmonized]). The model 
performance was evaluated using 
AUROC curve. The number of 
patients included was as follows: 

Ivanics et al[66], 2022 A multinational study of ML models 
assessing their 90-d predictive value 
post LT across United States, Canada 
and

To evaluate the feasibility of 
developing MLA-based models to 
predict 90-d post-LT mortality using 
3 large nationaltransplant registries 
and to evaluate the external validity 
of the models across countries

The best performing MLA-based 
model was ridge regression across 
both individual registries and 
harmonized data sets. Model 
performance diminished from 
individualized to the harmonized 
registries, especially in Canada 
(individualized ridge: AUROC, 0.74; 
range, 0.73-0.74; harmonized: 
AUROC, 0.68; range, 0.50-0.73) and 
US (individualized ridge: AUROC, 
0.71; range, 0.70-0.71; harmonized: 
AUROC, 0.66; range, 0.66-0.66) data 
sets. External model performance 
across countries was poor overall

External model performance across 
countries was poor overall. MLA-
based models yield a fair discrim-
inatory potential when used within 
individual databases. However, the 
external validity of these models is 
poor when applied across countries
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Canada, n = 1214; the United 
Kingdom, n = 5287; and the United 
States, n = 59558

Cheong et al[67], 2021 A Korean study assessing the role of 
pre LT hyperlactatemia in early 
mortality post LT

To study  important variables for 
pre-LT hyperlactatemia and examine 
the impact of preoperative hyperlact-
atemia on 30 and 90 d mortality after 
LT

A total of 2002 patients from LT 
registry between January 2008 and 
February 2019 were analyzed. Six 
organ failures (liver, kidney, brain, 
coagulation, circulation, and lung) 
were defined by criteria of EASL-
CLIF ACLF Consortium. Variable 
importance of pre-operative 
hyperlactatemia was examined by 
machine learning using random 
survival forest (RSF). Kaplan-Meier 
Survival curve analysis was 
performed to assess 90-d mortality

Median lactate level was 1.9 mmol/L 
(interquartile range: 1.4, 2.4 mmol/L) 
and 107 (5.3%) patients showed > 4.0 
mmol/L. RSF analysis revealed that 
the four most important variables for 
hyperlactatemia were MELD score, 
circulatory failure, hemoglobin, and 
respiratory failure. The 30-d and 90-d 
mortality rates were 2.7% and 5.1%, 
whereas patients with lactate > 4.0 
mmol/L showed increased rate of 
15.0% and 19.6%, respectively

Pre-LT lactate > 4.0 mmol/L was 
associated with increased early post-
LT mortality. Our results suggest 
that future study of correcting 
modifiable risk factors may play a 
role in preventing hyperlactatemia 
and lowering early mortality after LT

Kulkarni et al[68], 2021 An American study using Random 
Forest approach to identify key 
predictors of outcomes in pediatric 
candidates less than 2 yr of age 
undergoing LT

To identify key predictors of LT 
outcomes in Pediatric candidates less 
than 2 yr of age using random forest 
approach

SRTR database was queried for 
children < 2 yr listed for initial LT 
during 2002-17 (n = 4973). Subjects 
were divided into three outcome 
groups; bad (death or removal for 
too sick to transplant), good 
(spontaneous improvement) and 
transplant. Demographic, clinical, 
listing history and laboratory 
variables at the time of listing 
(baseline variables), and changes in 
variables between listing and prior to 
outcome (trajectory variables) were 
analyzed using random forest 
analysis

81.5% candidates underwent LT, 
12.3% had bad outcome. RF model 
including both baseline and 
trajectory variables improved 
prediction compared to model using 
baseline variables alone. RF analyses 
identified change in serum creatinine 
and listing status as the most 
predictive variables. 80% of subjects 
listed with a PELD score at time of 
listing and outcome underwent LT, 
while 70% of subjects in both bad 
and good outcome groups were 
listed with either Status 1 (A or B) 
prior to an outcome, regardless of 
initial listing status. Increase in 
creatinine on LT waitlist was 
predictive of bad outcome. Longer 
time spent on WL was predictive of 
good outcome. Subjects with biliary 
atresia, liver tumors and metabolic 
disease had LT rate > 85%; while > 
20% of subjects with acute liver 
failure had a bad outcome

Change in creatinine, listing status, 
need for RRT, time spent on LT 
waitlist and diagnoses were the most 
predictive variables

Recipients with 0, 1, 2, 3, 4, 5, and 6 
points had an observed 90-d 
mortality of 6.0%, 8.7%, 10.4%, 
11.9%, 15.7%, 16.0%, and 19.7%, 
respectively (P ≤ 0.001). One-year 
mortality was 9.8%, 13.4%, 15.8%, 
17.2%, 23.0%, 25.2%, and 35.8% (P ≤ 
0.001) and five-year survival was 
78%, 73%, 72%, 71%, 65%, 59%, and 
48%, respectively (P = 0.001). The 
mean 90-d mortality for the cohort 
was 9%. The area under the curve of 
the model was 0.952 for the discrim-

Molinari et al[69], 2019 An American study using ML 
techniques to identify predictors of 
short and long term mortality post 
cadaveric LT

To develop a scoring system using 
ML that could stratify patients by 
their risk of death after LT based 
only on preoperative variables. 
Secondary aims were to assess 
whether the model could also predict 
1- and 5-yr patient survival

The study population was 
represented by 30458 adults who 
underwent LT in the United States 
between January 2002 and June 2013. 
Machine learning techniques 
identified recipient age, Model for 
End-Stage Liver Disease score, body 
mass index, diabetes, and dialysis 
before LT as the strongest predictors 
for 90-d postoperative mortality. A 
weighted scoring system (minimum 
of 0 to a maximum of 6 points) was 
subsequently developed

Short- and long-term outcomes of 
patients undergoing cadaveric LT 
can be predicted using a scoring 
system based on recipients’ 
preoperative characteristics
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ination of patients with 90-day 
mortality risk ≥ 10%

Cooper et al[70], 2022 A United States study predicting the 
risk of GVHD among patients 
undergoing OLT using ML models

To develop ML algorithms for 
predicting the risk of GVHD among 
patients undergoing OLT

To develop a predictive model, we 
retrospectively evaluated the clinical 
features of 1938 donor-recipient pairs 
at the time they underwent OLT at 
our center; 19 (1.0%) of these 
recipients developed GVHD. This 
population was divided into training 
(70%) and test (30%) sets. A total of 7 
machine-learning classification 
algorithms were built based on the 
training data set to identify patients 
at high risk for GVHD

The C5.0, heterogeneous ensemble, 
and generalized gradient boosting 
machine (GGBM) algorithms 
predicted that 21% to 28% of the 
recipients in the test data set were at 
high risk for developing GVHD, with 
an AUROC of 0.83 to 0.86. The 7 
algorithms were then evaluated in a 
validation data set of 75 more recent 
donor-recipient pairs who 
underwent OLT at our center; 2 of 
these recipients developed GVHD. 
The logistic regression, hetero-
geneous ensemble, and GGBM 
algorithms predicted that 9% to 11% 
of the validation recipients were at 
high risk for developing GVHD, with 
an AUROC of 0.93 to 0.96 that 
included the 2 recipients who 
developed GVHD

we show that a machine-learning 
approach can predict which 
recipients are at high risk for 
developing GVHD after OLT based 
on factors known or measurable at 
the time of transplantation

He et al[71], 2021 A Chinese study comparing the 
predicting power of ML models and 
logistic regression for AKI among 
patients undergoing DCDLT

To compare the performance of ML 
algorithms to that of a logistic 
regression model for predicting AKI 
after LT using preoperative and 
intraoperative data

A total of 493 patients with donation 
after cardiac death LT (DCDLT) were 
enrolled. AKI was defined according 
to the clinical practice guidelines of 
kidney disease: improving global 
outcomes (KDIGO). The clinical data 
of patients with AKI (AKI group) 
and without AKI (non-AKI group) 
were compared. With logistic 
regression analysis as a conventional 
model, four predictive machine 
learning models were developed 
using the following algorithms: 
Random forest, support vector 
machine, classical decision tree, and 
conditional inference tree. The 
predictive power of these models 
was then evaluated using the AUC

The incidence of AKI was 35.7% 
(176/493) during the follow-up 
period. Compared with the non AKI 
group, the AKI group showed a 
remarkably lower survival rate (P < 
0.001). The random forest model 
demonstrated the highest prediction 
accuracy of 0.79 with AUC of 0.850 
(95%CI: 0.794-0.905), which was 
significantly higher than the AUCs of 
the other machine learning 
algorithms and logistic regression 
models (P < 0.001)

The random forest model based on 
machine learning algorithms for 
predicting AKI occurring after 
DCDLT demonstrated stronger 
predictive power than other models 
in our study

Data of 786 patients who received LT 
from January 2015 to January 2020 
was retrospectively extracted from 
the big data platform of Third 
Affiliated Hospital of Sun Yat-sen 
University. Seven ML models were 
developed to predict postoperative 
sepsis. The AUC, sensitivity, 
specificity, accuracy, and f1-score 
were evaluated as the model 
performances. The model with the 
best performance was validated in an 
independent dataset involving 118 

After excluding 109 patients 
according to the exclusion criteria, 
677 patients who underwent LT were 
finally included in the analysis. 
Among them, 216 (31.9%) were 
diagnosed with sepsis after LT, 
which were related to more periop-
erative complications, increased 
postoperative hospital stay and 
mortality after LT (all P < 0.05). Our 
results revealed that a larger volume 
of red blood cell infusion, ascitic 
removal, blood loss and gastric 

Chen et al[72], 2023 A Chinese study predicting the risk 
of sepsis within 7 days post LT

Our study aimed to develop and 
validate a predictive model for 
postoperative sepsis within 7 days in 
LT recipients using ML technology

The random forest classifier  model 
showed the best overall performance 
to predict sepsis after LT
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adult LT cases from February 2020 to 
April 2021. The postoperative sepsis-
associated outcomes were also 
explored in the study

drainage, less volume of crystalloid 
infusion and urine, longer anesthesia 
time, higher level of preoperative 
TBIL were the top 8 important 
variables contributing to the 
prediction of post-LT sepsis. The RF 
model showed the best overall 
performance to predict sepsis after 
LT among the seven ML models 
developed in the study, with an AUC 
of 0.731, an accuracy of 71.6%, the 
sensitivity of 62.1%, and specificity of 
76.1% in the internal validation set, 
and a comparable AUC of 0.755 in 
the external validation set

Lee et al[73], 2018 A Korean study comparing the 
predicting power for AKI post LT of 
ML models and logistic regression

To compare the performance of 
machine learning approaches with 
that of logistic regression analysis to 
predict AKI after LT

We reviewed 1211 patients and 
preoperative and intraoperative 
anesthesia and surgery-related 
variables were obtained. The 
primary outcome was postoperative 
AKI defined by acute kidney injury 
network criteria. The following 
machine learning techniques were 
used: decision tree, random forest, 
gradient boosting machine, support 
vector machine, naïve Bayes, 
multilayer perceptron, and deep 
belief networks. These techniques 
were compared with logistic 
regression analysis regarding the 
AUROC

AKI developed in 365 patients 
(30.1%). The performance in terms of 
AUROC was best in gradient 
boosting machine among all analyses 
to predict AKI of all stages (0.90, 
95%CI: 0.86-0.93) or stage 2 or 3 AKI. 
The AUROC of logistic regression 
analysis was 0.61 (95%CI: 0.56-0.66). 
Decision tree and random forest 
techniques showed moderate 
performance (AUROC 0.86 and 0.85, 
respectively)

In our comparison of seven machine 
learning approaches with logistic 
regression analysis, the gradient 
boosting machine showed the best 
performance with the highest 
AUROC

Bredt et al[74], 2022 A Brazilian study investigating risk 
factors of AKI post DDLT using ML 
and Logistic regression

To identify the risk factors of AKI 
after deceased-donor LT (DDLT) and 
compare the prediction performance 
of ANN with that of LR for this 
complication

Adult patients with no evidence of 
end-stage kidney dysfunction (KD) 
who underwent the first DDLT 
according to model for end-stage 
liver disease (MELD) score allocation 
system were evaluated. AKI was 
defined according to the Interna-
tional Club of Ascites criteria, and 
potential predictors of postoperative 
AKI were identified by LR. The 
prediction performance of both ANN 
and LR was tested

The incidence of AKI was 60.6% (n = 
88/145) and the following predictors 
were identified by LR: MELD score > 
25 (OR = 1.999), preoperative kidney 
dysfunction (OR = 1.279), extended 
criteria donors (OR = 1.191), intraop-
erative arterial hypotension (OR = 
1.935), intraoperative massive blood 
transfusion (MBT) (OR = 1.830), and 
postoperative serum lactate (SL) (OR 
= 2.001). The area under the receiver-
operating characteristic curve was 
best for ANN (0.81, 95%CI: 0.75-0.83) 
than for LR (0.71, 95%CI: 0.67-0.76). 
The root-mean-square error and 
mean absolute error in the ANN 
model were 0.47 and 0.38, 
respectively

The severity of liver disease, pre-
existing kidney dysfunction, 
marginal grafts, hemodynamic 
instability, MBT, and SL are 
predictors of postoperative AKI, and 
ANN has better prediction 
performance than LR in this scenario

ANN: Artificial neural network; DRI: Donor risk index; D-R: Donor-recipient; LT: Liver transplantation; MELD: Model of end-stage liver disease; NN-CCR: Neural network for correct classification rate; NN-MS: Neural network for 
minimum sensitivity; SOFT: Survival outcomes following liver transplantation score; ROC: Receiver-operating curves; BAR: Balance of risk score; DNN: Deep neural network; ML: Machine Learning; ACLF: Acute-on-chronic liver 



Chongo G et al. ML models and prognostication of LT

WJT https://www.wjgnet.com 15 March 18, 2024 Volume 14 Issue 1

failure; CLIF-C OFs: Chronic liver failure consortium organ failure scores: CLIF-SOFAs: CLIF sequential organ failure assessment scores; CLIF-C ACLFs: CLIF consortium ACLF scores; RF: Random forest; SRTR: Scientific registry of 
transplant recipients; PSSP: Patient-specific survival prediction; PSC: Primary sclerosing cholangitis; KM: Kaplan meier; OPOM: Optimized prediction of mortality; STAR: transplant analysis and research; HCC: Hepatocellular 
carcinoma; Milan-UCSF: Milan-University of California San Francisco criteria; 18F-FDG: 18F-fluorodeoxyglucose; PET-CT: Positron emission tomography and computed tomography; LDLT: Live donor liver transplantation; DDLT: 
Deceased donor liver transplant; EASL-CLIF ACLF Consortium: European Association for the Study of the Liver-CLIF ACLF; PELD: Pediatric end stage liver disease; WL: Wait list; GVHD: Graft-versus-host disease; OLT: Orthotropic 
liver transplant.

comparisons and findings are presented in Table 1.

Sub-analysis: In terms of predicting 90-d mortality, the RF model demonstrated the highest area under the curve (AUC) 
value of 0.940 compared to other ML models. Additionally, among the six studies identified in the literature search that 
discussed the prediction of complications post liver transplant using ML models, an analysis of the AUC values indicated 
that the 'gradient boosting machine' model performed better than other ML models in predicting the risk of graft-versus-
host disease (GVHD), pneumonia, and acute kidney injury (AKI). On the other hand, the RF model showed better 
performance in predicting the risk of sepsis and AKI post liver transplant. Detailed results and comparisons are provided 
in Table 1.

This sub-analysis highlights the specific performance of ML models in predicting 90-d mortality and the risk of 
complications following LT. The RF model exhibited superior predictive capability for mortality within the 90-d 
timeframe.

Furthermore, when examining the prediction of post-transplant complications, the 'gradient boosting machine' model 
demonstrated better performance in predicting GVHD, pneumonia, and AKI, while the RF model showed greater effect-
iveness in predicting the risk of sepsis and AKI. These findings emphasize the potential of ML techniques in enhancing 
prognostic accuracy and tailoring clinical management strategies in LT.

DISCUSSION
The review highlights a limited number of studies, just 64, that have explored the application of ML models in the context 
of LT. This scarcity of research, despite an unrestricted search, indicates a historical lack of emphasis on the potential of 
ML models in the realm of prognosis and transplant decision-making. Factors contributing to this limited attention 
include lingering perceptions of ML models as associated with science fiction and concerns regarding potential errors and 
patient harm. However, it's noteworthy that ML models have advanced in sophistication and have implemented 
strategies to address challenges like overfitting. Their effectiveness is contingent upon access to substantial datasets for 
continuous learning and refinement[76].

In recent years, there has been a notable surge in research at the intersection of ML and LT, particularly within the last 
five years. Among the 23 studies reviewed, a substantial majority (91%) were conducted between 2018 and 2023, sig-
nifying a burgeoning interest in this field[77]. Additionally, a significant proportion of these studies (61%) originated 
from the United States and China. A multinational study involving participants from the United States, United Kingdom, 
and Canada stands out, as it evaluated the 90-d predictive capacity of ML models post-LT across these countries, utilizing 
transplant registries. Notably, the study revealed that ML model performance varied when applied across countries, 
indicating limited external validity. Therefore, it is suggested that ML algorithms should be tailored to each country's 
specific transplant registry data for enhanced reliability. The underrepresentation of other countries in these studies 
underscores the importance of more diverse ML research to benefit liver transplant patients worldwide.
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Figure 3 PRISMA flow chart of the selection process.

Figure 4 Countries that published machine learning studies related to liver transplantation and prognosis extracted from literature over 
the study period.

Crucially, ML methods employed for the allocation of orthotopic liver transplants, whether from living donors, 
deceased donors, or cadaveric sources, should be rooted in population-specific parameters pertaining to the recipient. 
This individualized approach is essential to ensure post-transplant longevity and minimize the risk of complications. The 
utilization of ML models that take into account an individual's unique population parameters or variables to assess the 
risk of mortality prior to transplantation holds the potential to prevent unnecessary mortality and morbidity associated 
with high-risk transplantations[78].

Concerning the underlying reasons for transplantation, factors such as ACLF, PSC, and HCC have been prominent 
considerations. Existing studies have demonstrated the pivotal role of LT as a life-saving intervention for ACLF patients
[79]. ACLF can manifest at any stage of chronic liver disease, leading to a rapid deterioration in liver function and a high 
mortality rate within a short timeframe[80], as it is noticeable a high mortality rate for non-transplanted ACLF patients 
within 28 and 90 d[81,82].
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Figure 5 Increase in machine learning studies related to liver transplantation and prognosis in the past 5 years.

LT is a critical treatment option for various liver-related conditions, including ACLF, PSC, and HCC. However, the 
efficacy of LT in ACLF patients remains debated, with conflicting findings suggesting no significant survival advantage 
over non-transplanted patients[83]. ML models have the potential to improve the assessment of short-term mortality risk 
in ACLF patients post-transplantation, thereby aiding in the allocation of liver allografts and potentially enhancing 
outcomes[79]. It is imperative to expand the scope of research on ML models in LT to encompass diverse patient 
populations, thereby increasing the external validity of these models. Customizing ML algorithms to specific transplant 
registries and incorporating population-specific parameters can enhance the accuracy and effectiveness of prognosis and 
decision-making in LT.

PSC is a chronic liver disease characterized by progressive bile duct inflammation, cholestasis, and fibrosis. LT is the 
primary treatment for end-stage PSC, yielding generally favorable outcomes, although complications like cholangiocar-
cinoma, recurrent disease, worsening of inflammatory bowel disease, and an elevated risk of colonic cancer pose 
challenges[84]. Cholangiocarcinoma develops in 8%-18% of long-standing PSC patients[85], and PSC recurrence post-
transplantation is observed in some cases[86]. Increased dysplasia and colon cancer risk are also associated with colitis 
patients having coexisting PSC[87,88]. Consequently, accurate evaluation and allocation of liver allografts in PSC patients 
are critical, with ML algorithms incorporating pertinent variables from PSC patients facilitating informed and precise 
decision-making[86-89].

HCC is a common indication for LT, ranking fifth among the most prevalent malignancies and being the third leading 
cause of cancer-related mortality worldwide[90-92]. LT offers a promising therapeutic option for long-term survival in 
HCC cases by addressing both advanced liver disease and HCC itself[93,94]. However, the risk of HCC recurrence post-
transplantation underscores the necessity for careful patient selection. HCC recurrence occurs most frequently among 
liver transplant recipients compared to other liver diseases, estimated at 8%-20%[95]. Guidelines recommend active post-
transplant surveillance for HCC patients, such as regular liver imaging tests within the first postoperative year and 
subsequent monitoring to detect lung metastases[96]. Tumor recurrence in HCC patients after transplantation is often 
attributed to advanced tumor burden and unclear tumor biology[97].

The Milan criteria, comprising specific size and number requirements for liver lesions along with the absence of 
vascular invasion or extra-hepatic metastases, were established to guide LTs for HCC[98]. Transplantations adhering to 
these criteria have demonstrated comparable survival outcomes to those performed for cirrhosis. However, criticism of 
the Milan criteria centers on their strictness in terms of lesion size and number, with some studies suggesting successful 
transplantation outcomes for HCC patients beyond these criteria. Additionally, the Milan criteria do not account for 
tumor biology, potentially limiting their applicability[99].

Down-staging, a strategy involving loco-regional therapy to reduce tumor burden and bring lesions outside the 
transplant criteria within the criteria, has shown promise in achieving favorable long-term outcomes for HCC patients 
beyond the Milan criteria. Nevertheless, tumor recurrence remains a concern, occurring in 8%-20% of transplanted HCC 
patients, typically within 2 years post-transplantation, with a median survival of 1 year following recurrence diagnosis
[100].

To address the risk of tumor recurrence, various prognostic scores have been developed, such as the Risk Estimation of 
Tumor REcurrence After Transplant (RETREAT) score. This score considers three factors associated with post-transplant 
HCC recurrence: explant liver tumor burden, microvascular invasion evidence, and alpha-fetoprotein levels at the time of 
transplant. The RETREAT score ranges from 0 to 8, with higher scores indicating an elevated risk of recurrence. A score of 
0 corresponds to a 1% recurrence rate at 1 year and a 2.9% recurrence rate at 5 years. Conversely, RETREAT scores of 5 or 
higher are associated with 1- and 5-year HCC recurrence rates of 39.3% and 75.2%, respectively[101]. Deep learning 
models can be used for diagnosis of HCC[102,103].

The RETREAT score, while valuable for post-transplant management, has limitations as it relies on factors that assess 
explant tissue biology and anatomy. This restricts its utility to assessing transplant failure risk after transplantation. ML 
models, utilizing pre-transplant data in HCC patients, can effectively allocate liver allografts before transplantation, 
thereby enhancing long-term survival prospects[101].
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Although ML is gaining traction in various medical disciplines, this review reveals a dearth of pediatric studies among 
the 23 studies discussing ML and LT. This shortage reflects the limited interest in applying ML in pediatric patients, 
aligning with trends in other pediatric disciplines where ML adoption has been low. Consequently, there's a clear need 
for more research on ML in pediatric LT to assess its impact in this domain[104]. Furthermore, the high mortality rate in 
pediatric acute liver failure underscores the importance of robust criteria, including ML models, to inform decision-
making in this patient group[105].

Evaluating ML model performance involves various metrics like accuracy, precision, confusion matrix, recall, speci-
ficity, precision-recall curve, F1 score, and ROC curve. The use of ROC values in this study for assessing different ML 
models across studies is justified and reliable.

The utilization of ML algorithms in LT prognostication is a significant advancement. These models are primarily based 
on pre-transplant donor and recipient data, allowing for accurate predictions before transplantation. Considering that 
crucial decisions regarding LT must be made pre-procedure, ML models hold promise in addressing the complex 
challenge of allocating allografts to the most suitable recipients[101].

Numerous studies reviewed consistently indicate that ML models provide satisfactory to excellent predictions for both 
short- and long-term mortality or complication risks[106]. Additionally, emerging evidence suggests that AI can surpass 
traditional tools in predicting cardiac events post LT[107] and mortality related to esophageal variceal bleeding[108,109]. 
Accurate predictions of short- and long-term complications following LT are crucial, as they inform the need for addi-
tional surveillance or even potential halting of the transplantation process for patients at higher risk of mortality. Long-
term complications post LT remain a significant concern, with limited improvement in survival rates over the years[110].

Long-term survivors face increased risks of comorbidities like metabolic syndrome, renal dysfunction, cardiovascular 
disease, and extrahepatic malignancies, necessitating multidisciplinary management strategies to prevent medical 
complications and their associated cost implications[111,112]. Metabolic syndrome, in particular, is prevalent among liver 
transplant recipients and is associated with chronic liver disease progression and increased cardiovascular risk[110]. 
Sustained transient post-transplant diabetes significantly elevates the long-term risk of major adverse cardiac events and 
mortality[113]. Therefore, precise prognostication of patients at risk of long-term complications is essential, and AI 
algorithms offer promise in enhancing risk assessment and improving patient outcomes.

Furthermore, ML models consistently outperform traditional scoring systems, including MELD, D-MELD, SOFT, p-
SOFT, BAR, DRI score, ABIC, CLIF-C OFs, CLIF-C ACLFs, and CLIF SOFA, as well as models based on Cox and LR. This 
finding is particularly significant given the limitations of traditional scoring systems in predicting post-transplant 
outcomes[101]. The incorporation of ML algorithms in organ allocation can enhance efficiency by preventing unnecessary 
transplantations and allocating allografts to patients with a higher likelihood of success. This optimization helps manage 
the associated costs of transplant failure and complications, especially considering the limited availability of donor 
organs. Regarding short and long-term mortality prediction (90-d), the RF model consistently exhibits the highest AUC
[114,115].

ML models provide numerous advantages, such as managing large datasets, objectivity, and assisting in cases with 
similar probabilities. In LT, ANNs and RF classifiers are the commonly used AI models. ANNs excel at identifying 
complex patterns beyond human capability and can yield near-perfect predictions, reaching up to 95% accuracy in 3-
months graft survival. However, ANNs lack transparency regarding the variables they consider. In contrast, RF models 
offer better confidence in utilizing marginal organs, resulting in improved post-transplantation outcomes[114].

RF models exhibit superiority when predicting the risk of sepsis and AKI. Although overall survival post-LT has 
improved, post-transplantation infections remain a significant challenge, contributing to morbidity and mortality. Studies 
reveal that 35%-55% of liver transplant recipients experience infection-related complications, including bacterial, fungal, 
and multidrug-resistant infections. Most of these infections occur within the first six months after transplantation and are 
responsible for a significant portion of early post-transplant deaths[116-119].

AKI and chronic renal dysfunction are common complications following LT. Contributing factors include long-term 
exposure to immunosuppressive medications like calcineurin inhibitors, preoperative kidney dysfunction, perioperative 
AKI/hypertension, diabetes mellitus (DM), and atherosclerosis pre- and/or post-transplantation. Long-term data 
indicates that kidney failure, defined as a glomerular filtration rate of 29 mL/min/1.73 m² or less or the development of 
end-stage renal disease, occurs in 18% at 5 years and 25% at 10 years post-transplantation[120]. Factors significantly asso-
ciated with worse survival in patients with renal dysfunction include higher age at transplantation, increased creatinine 
levels, post-transplant DM, and transplantation in the pre-MELD era. Consequently, serum creatinine was incorporated 
into the MELD score to prioritize donor livers for transplant candidates with renal dysfunction[121,122]. AKI 
immediately following LT is linked to increased morbidity and mortality, with an incidence ranging from 25% to 60%[95].

The use of ML models in predicting the risk of sepsis and AKI is vital to enhance post-liver transplant outcomes. Post-
transplant infections and AKI are associated with increased healthcare costs, prolonged hospital stays, and adverse effects 
on both allograft and patient survival[116,119]. Also, ML models have been used for the diagnosis of appendicitis and 
heart disease[123,124]. Employing ML models for predicting and managing these complications holds the potential to 
yield improved patient outcomes, reduced healthcare expenditures, and an overall better quality of life.

Despite the demonstrated superiority of ML models in the review, certain limitations must be acknowledged. Many 
studies relied on retrospective designs, which can introduce biases and impact result generalizability. Prospective studies 
with larger sample sizes and more diverse populations are necessary to validate ML model performance across different 
contexts and patient groups.

Another limitation stems from the lack of standardization and consistency in data collection and reporting of LT-
related variables across various centers and studies. Data collection disparities can result in inconsistencies and hinder 
accurate comparisons of different ML models. Efforts should be made to standardize data collection practices in LT 
research to enhance the reliability and general applicability of ML models.



Chongo G et al. ML models and prognostication of LT

WJT https://www.wjgnet.com 19 March 18, 2024 Volume 14 Issue 1

The underrepresentation of pediatric LT in the reviewed studies underscores a research gap. Pediatric patients have 
unique considerations and challenges in LT, and developing ML models tailored to this population could significantly 
enhance their outcomes.

Ethical considerations are paramount when implementing ML models in clinical decision-making. These models must 
be transparent, explainable, and accountable to ensure that clinicians and patients comprehend the rationale behind 
predictions, enabling informed decisions. Furthermore, addressing the black box dilemma of AI models for prognost-
ication is imperative, as ensuring transparency and interpretability in these models is essential to uphold ethical 
standards in healthcare decision-making.

CONCLUSION
This study reveals a significant surge in interest in the application of ML for liver transplant prognostication, with the 
majority of the studies emerging within the past five years. Notably, the United States and China stand out as the 
frontrunners in this field. This research also emphasizes that the performance of ML models exhibits variability when 
applied across different countries, underscoring limited external validity. Consequently, ML algorithms tailored to each 
country's unique transplant registry data demonstrate greater reliability.

Furthermore, the study highlights the superior predictive accuracy of ML models built on pre-transplant data in 
comparison to established scoring systems like MELD, irrespective of the underlying cause of hepatic failure, including 
HCC. Additionally, the study suggests that when selecting an ML model for predicting the risk of sepsis and AKI post-
LT, the RF model may be the most suitable choice.

Overall, the use of ML models in LT has the potential to optimize organ allocation, improve patient outcomes, and 
reduce healthcare costs. However, more prospective studies with larger and diverse populations are needed to validate 
ML model performance and standardize data collection practices in LT research. Additionally, the inclusion of pediatric 
patients in ML research is crucial to address their unique needs. With continued research and advancements in ML 
techniques, ML models are poised to play an increasingly pivotal role in LT in the coming years.

ARTICLE HIGHLIGHTS
Research background
Liver transplantation (LT) is a life-saving procedure for individuals with end-stage liver disease, offering not only health 
restoration but also a potential 15-year extension of life. However, the equitable allocation of donor organs remains a 
challenge due to donor scarcity. While the survival rates post-transplant are commendable, the shortage of donor organs 
persists, pushing the field towards utilizing less conventional donors. An efficient system of liver organ allocation is 
essential as there's a growing demand, leading to escalating healthcare costs. Traditional scoring systems like Child-
Turcotte-Pugh and model for end-stage liver disease (MELD) have been employed for organ allocation, but they have 
limitations, such as empirical variable selection and limited predictive ability.

Research motivation
The primary challenge in LT is optimizing organ allocation. The scarcity of donor organs necessitates accurate prognost-
ication for organ allocation and transplant success. While traditional scoring systems have been useful, they are not 
without limitations. Therefore, there's a need to explore more reliable and predictive methods. In this context, machine 
learning (ML) models present a promising avenue. ML algorithms can analyze various data types, from structured to 
unstructured, and offer a new dimension in predictive accuracy. Their ability to handle complex datasets and discover 
intricate patterns makes them suitable for enhancing prog-nostication in LT. Given the critical importance of optimizing 
organ allocation and predicting transplant outcomes, evaluating the utility of ML models is a significant step towards 
improving the LT process.

Research objectives
The primary objectives of this study are to comprehensively assess the effectiveness of ML models in LT prognostication 
and to compare their performance and reliability with traditional scoring systems. This evaluation involves a systematic 
review of observational studies to determine the real-world utility of ML models in predicting transplant outcomes. 
Realizing these objectives is crucial for advancing the field of LT and ensuring that patients receive the most suitable 
organs, ultimately improving survival rates and healthcare resource allocation. Moreover, the study aims to bridge the 
gap between ML and traditional scoring systems, shedding light on the potential of ML models to revolutionize 
prognostication in LT.

Research methods
This systematic review followed Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines and 
conducted a comprehensive literature search on PubMed/MEDLINE using specific terms related to ML, artificial 
intelligence (AI), LT, and prognosis. It included all relevant observational studies without restrictions on publication year, 
age, or gender, focusing on ML models for LT prognosis and post-transplant complications. Exclusion criteria covered 
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non-English papers, review articles, case reports, conference papers, studies with missing data, or methodological flaws. 
A single reviewer screened and analyzed eligible studies, summarizing their objectives, methods, results, and con-
clusions. Data extraction included study type, population, year, purpose, setting, methods, results, and strengths/
limitations. The review also compared ML models to traditional scoring systems. This systematic approach synthesized 
information, offering a comprehensive understanding of artificial intelligence's role in LT prognosis and identified trends 
and potential benefits and limitations. It provides valuable insights into the current state of research in predicting LT 
outcomes with AI.

Research results
In this systematic review, an initial pool of 64 references was identified and refined through a selection process. After 
excluding conference articles, review papers, and duplicates, 23 studies were included for analysis. These studies 
spanned from 2014 to 2023 and covered various transplantation reasons, with the majority conducted in the United States 
(34.8%), followed by China (26%). The primary outcomes assessed were mortality and post-transplant complications, 
with ML models consistently outperforming traditional models and scoring systems. The receiver operating characteristic 
curve analysis demonstrated ML models' excellent predictive performance for both short-term and long-term outcomes. 
Notably, the Random forest (RF) model excelled in predicting 90-d mortality, while the 'gradient boosting machine' 
model showed proficiency in forecasting complications like graft-versus-host disease, pneumonia, and acute kidney 
injury (AKI). The RF model was particularly adept at predicting sepsis and AKI. These findings highlight the potential of 
ML to enhance prognostic accuracy and inform clinical management in LT.

Research conclusions
This study underscores the growing interest in applying ML to liver transplant prognostication, with a surge in research 
within the last five years. Notably, the United States and China have been leaders in this field. The research emphasizes 
the need for customized ML algorithms, adapted to each country's unique transplant registry data, to enhance the reli-
ability of predictions. ML models, based on pre-transplant data, consistently outperform established scoring systems like 
MELD, regardless of the underlying cause of hepatic failure, including hepatocellular carcinoma. Additionally, when 
selecting an ML model for predicting the risk of sepsis and AKI post-LT, the RF model appears to be a promising choice. 
These findings point to the potential of ML models in optimizing organ allocation, improving patient outcomes, and 
reducing healthcare costs in LT.

Research perspectives
The future of research in this field should focus on conducting more prospective studies with larger and diverse patient 
populations to validate the performance of ML models and enhance their generalizability. Standardizing data collection 
practices in LT research is crucial to ensure consistency and facilitate accurate comparisons of different ML models. 
Furthermore, there is a pressing need to include pediatric patients in ML research to address their unique requirements 
and challenges in LT. Ethical considerations should remain paramount, with a focus on ensuring transparency, explain-
ability, and accountability in ML models to uphold ethical standards in healthcare decision-making. Continued 
advancements in ML techniques and the expansion of research efforts are expected to play an increasingly pivotal role in 
LT, offering the potential to further enhance patient care and clinical decision-making in the coming years.
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