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Abstract
The incidence of esophageal adenocarcinoma, a poor 
prognosis neoplasia, has risen dramatically in recent de-
cades. Barrett’s esophagus represents the best-known 
risk factor for esophageal adenocarcinoma develop-
ment. Non-steroidal anti-inflammatory drugs through 
cyclooxygenase-2 inhibition and prostaglandin metabo-
lism regulation could control cell proliferation, increase 
cell apoptosis and regulate the expression of growth 
and angiogenic factors. Statins can achieve equivalent 
effects through prenylation and subsequently control of 
cellular signaling cascades. At present, epidemiological 
studies are small and underpowered. Their data could 
not justify either medication as a chemo-preventive 
agent. Population based studies have shown a 43% 
reduction of the odds of developing an esophageal ad-
enocarcinoma, leaving out or stating a 25% reduction 
in patients consuming non-aspirin nonsteroidal anti-
inflammatory drugs and a 50% reduction in those pa-
tients consuming aspirin. They have also stated a 19% 
reduction of esophageal cancer incidence when statins 
have been used. Observational studies have shown that 
non-steroidal anti-inflammatory drugs could reduce the 

adenocarcinoma incidence in patients with Barrett’s es-
ophagus by 41%, while statins could reduce the risk by 
43%. The cancer preventive effect has been enhanced 
in those patients taking a combination of non-steroidal 
anti-inflammatory drugs and statins (a 74% decrease). 
Observational data are equivocal concerning the ef-
ficacy of non-steroidal anti-inflammatory drug sub-
classes. Non-steroidal anti-inflammatory drugs clearly 
have substantial potential for toxicity, while statins are 
rather safe drugs. In conclusion, both non-steroidal 
anti-inflammatory drugs and statins are promising che-
mopreventive agents and deserve further exploration 
with interventional studies. In the meanwhile, their 
use is justified only in patients with cardiovascular dis-
ease.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Esophageal adenocarcinoma remains a major 
burden upon health. Experimental studies have sug-
gested that non-steroidal anti-inflammatory drugs and 
statins may have useful actions against esophageal 
cancer cells. This review of observational studies shows 
that non-steroidal anti-inflammatory drugs reduced 
adenocarcinoma incidence in patients with Barrett’
s esophagus by 41%, while statins reduced the risk 
by 43%. The cancer preventive effect is enhanced in 
those patients taking a combination of non-steroidal 
anti-inflammatory drugs and statins (a 74% decrease). 
Non-steroidal anti-inflammatory drugs clearly have 
substantial potential for toxicity, while statins are rather 
safe drugs. Their combination offers promise for che-
moprevention and further interventional studies are 
warranted.
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INTRODUCTION
A rapid increase in incidence and mortality from esopha-
geal adenocarcinoma (EAC) has been observed over the 
past four decades in the Western world[1,2]. Although the 
absolute incidence of  EAC varies dramatically by gender 
and race, few demographic groups have been spared 
from the increases[3]. Moreover, survival of  persons with 
EAC remains abysmal, with most succumbing to the dis-
ease within a year[4], while the 5-year survival rate is less 
than 15%[5].

Barrett’s esophagus (BE), replacement of  the squa-
mous esophageal mucosa by metaplastic columnar epi-
thelium due to prolonged reflux[6] of  the gastric content 
into the esophagus, represents the best-known risk factor 
for EAC development[7]. The annual incidence of  EAC 
development in patients with BE is 0.2%-0.5%[8,9].

Clinical and demographic factors that have shown 
some promise in being predictive of  malignant trans-
formation in BE are male gender[10,11], increasing age[11], 
length of  Barrett’s segment[12-14], duration of  BE[13] and 
size of  hiatal hernia[14]. There is little evidence to suggest 
that total alcohol consumption or specific alcoholic bev-
erages modifies the risk of  EAC in the general popula-
tion[15,16], while smoking[16-19] and obesity[16,20] raise the risk 
for neoplastic progression. 

According to the most popular theory, carcinogenesis 
in BE patients is completed in three stages. During the 
first, a distinct stem cell population develops in the bone 
marrow of  genetically predisposed patients with gastro-
esophageal reflux disease. Those cells migrate during the 
second stage to the gastroesophageal junction and lower 
esophagus, producing a macroscopically visible BE. The 
inflammatory milieu in the lower esophagus produces the 
driving force for stem cell migration. Repeat call for re-
pair in the hostile environment of  lower esophagus in BE 
patients leads to increase cell proliferation and frequent 
mutations. As noxious mutations sum up by a multistep 
process, metaplastic epithelium evolves into low-grade 
dysplasia, high-grade dysplasia, early EAC and ultimately 
invasive cancer[21]. 

Although cancer surveillance is performed in most 
institutions, once diagnosis of  BE is rendered, the true 
cost-benefit ratio of  this endeavour is still essentially 
unknown[22]. Surveillance does not interfere with the neo-
plastic process and could not affect the pre-neoplastic 
stem cell population generated in the bone marrow. Thus, 
there is a quest for global and more interventional strate-
gies. Chemoprevention is attractive, especially for the 
high-risk group of  BE individuals, since it can affect the 
neoplastic process from its early beginning. Moreover, 
because it could be effective even under insufficient gas-

tric acid suppression[23], it may be superior to BE ablative 
techniques that presuppose adequate acid suppression to 
prevent BE recurrence[24] and may prove too expensive[25]. 
Finally, since BE surveillance cost-effectiveness has been 
undermined by recent data suggesting a low risk of  ma-
lignant transformation[26,27], chemoprevention seems to 
represent an attractive alternative[28]. At present, there 
are no proven chemo-preventive agents, although non-
steroidal anti-inflammatory drugs (NSAIDs) and statins 
appear to offer the most attractive combination of  risks 
and benefits. 

This review is to assess current experimental and epi-
demiological data that NSAIDs and statins could reduce 
the risk of  developing EAC in BE. Moreover, we aim 
to clarify how existing findings could be included in the 
EAC etiological models, as well as any side effects, that 
would follow clinical application of  NSAIDs and statins 
for cancer prevention.

NSAIDS AND EAC CHEMOPREVENTION
Numerous in vitro and animal studies support the possible 
chemo-preventive effect of  cyclooxygenase-2 (COX-2) 
inhibition in BE. COX-2 inhibitors, either drugs or natu-
rally occurring in plant foods, could produce significant 
suppression of  cell proliferation and induce cell cycle ar-
rest in cultured EAC cells[29]. Selective COX-2 inhibitors 
have a similar effect in cell cultures from endoscopic bi-
opsies taken from BE patients[30]. Adding COX-2 inhibi-
tors in rat diet after esophagojejunostomy had reduced 
progression to EAC[31,32] in some studies, while indo-
methacin, but not selective COX-2 inhibitors, produced a 
similar effect in others[33]. 

Several case control studies comparing EAC patients 
to healthy controls have shown that NSAID use can ef-
fectively prevent EAC. A meta-analysis of  all human 
studies published prior to 2003, showed an overall 43% 
reduction of  the odds of  developing an EAC in NSAID 
takers, comprising a 25% reduction in patients consum-
ing non-aspirin NSAIDs and 50% reduction in aspirin 
users[34], but the analysis included only one small case-
control study comparing BE and EAC patients[35] and no 
prospective study. Thus, it cannot differentiate whether 
any beneficial effect of  NSAID use is produced before 
or after BE appearance. In 2009, a questionnaire based 
study that included approximately 300000 members of  
the American Association of  Retired Persons found no 
significant association between EAC and the use of  aspi-
rin or non-aspirin NSAIDs[36].

Since 2003, several observational studies compar-
ing BE and EAC patients have been published (Table 
1). These were either case-control retrospective[23,37,38] or 
cohort studies[39-43]. Prospective chemoprevention tri-
als are underway to evaluate the efficacy of  aspirin and 
NSAIDs. In the United Kingdom, the AspECT trial is 
currently evaluating the combination of  high-dose pro-
ton pump inhibitors and aspirin in minimizing the risk of  
progression to cancer in 9000 BE sufferers[44]. A similar 
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prospective study is running in the United States[45]. In 
the only prospective interventional study published today, 
Heath et al[46] randomized 100 patients who had either low 
or high-grade dysplasia and BE to receive either a COX-2 
selective NSAID (celecoxib) or placebo. After 48 wk of  
treatment, there was no significant difference between the 
2 groups in the proportion of  esophageal biopsy speci-
mens showing dysplasia or cancer[46]. This study has limi-
tations (e.g., the use of  dysplasia as the primary outcome, 
the use of  a low dose of  celecoxib) that prevent definite 
conclusions on the utility of  NSAID chemoprevention. 

Although all case control studies have shown that 

NSAID use is beneficial, there is considerable diversity 
concerning NSAID subclasses that could reduce EAC 
risk. Our case control study has shown that daily use of  
non-aspirin NSAIDs was beneficial; while a daily low 
dose, as well as infrequent use of  either aspirin or non-as-
pirin NSAIDs, was not[23]. Beales et al[37] found that statin 
and aspirin combination reduced incidence of  EAC and 
Nguyen et al[38] that all NSAIDs are beneficial, without a 
separate report of  NSAID subclasses. 

Cohort study results are more diverse. Vaughan et al[39] 
found that, comparing current NSAID users to those 
who never used, NSAIDs had a significantly decreased 
risk of  EAC. Kantor et al[43] reported that non-aspirin 
NSAID use reduced the risk of  neoplastic progression 
but not aspirin use. The other 3 cohort studies were neg-
ative[41-43], although Kantor found that NSAID use was 
beneficial only for patients with high-grade dysplasia. A 
pooled analysis of  6 population-based studies within the 
Barrett’s and Esophageal Adenocarcinoma Consortium 
have shown that daily NSAID use can reduce the risk of  
developing EAC by more than 40% (OR = 0.56, 95%CI: 
0.43-0.73, P < 0.001)[47]. A meta-analysis of  all published 
observational studies calculated the pooled effect size for 
COX-inhibitors to 0.59 (95%CI: 0.45-0.77) with minimal 
heterogeneity[48].

Many of  the observational studies have inherent 
limitations because not all confounding variables (such 
as socioeconomic status, tobacco and alcohol use, H. 
pylori status, dietary intake) have been taken into account, 
especially in case-control studies. Use of  aspirin and/or 
NSAIDs may have been associated with certain patient-
led behaviors that have an influence on risk. Such behav-
iors may include vitamin supplementation[49] and dietary 
habits. Furthermore, patients on aspirin may indeed have 
been more health conscious and might have been more 
likely to have their cancers detected than others. Finally, it 
is likely that those with upper gastrointestinal symptoms 
such as heartburn and regurgitation, risk factors for EAC, 
are less likely to have been prescribed NSAIDs or aspirin. 
The use of  acid-reducing agents with the sole aim of  re-
ducing BE has not been proven in a long-term controlled 
trial[45]. Although most studies suggest a synergy between 
sufficient acid suppression and NSAIDs chemopreven-
tive effect[38,40], we have shown that NSAIDs could be 
effective despite financially driven reduction of  proton 
pump inhibitor treatment[23]. 

Typically, diagnosis of  BE is made in men older than 
50 years of  age, a group with elevated frequency of  car-
diovascular disease. Low-dose aspirin is beneficial for 
primary cardiovascular events in men older than 50 years 
of  age who are at risk of  developing coronary artery 
disease[50-52]. Today, data concerning BE patients with 
ischemic heart disease are scarce. We have reported that 
low-dose aspirin could reduce the risk of  EAC in BE pa-
tients with ischemic heart disease, but it had no beneficial 
effect in patients without cardiovascular co-morbidities[53], 
possibly due to cofactors common to the etiology of  
ischemic heart disease and EAC, such as alcohol, tobacco, 
diet and exercise. 
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  Ref. Type of 
study

Size-
follow-up

Effect on EAC 
rate

Beneficial 
effect

  Abnet et al[36] Population 
based

311115 
AARP 

members

Aspirin 
OR = 1.1 

(0.78-1.57) 
Non-aspirin 

NSAIDs
OR = 0.90 
(0.55-1.43)

None

  Tsibouris et al[23] Case-
control

BE: 382
EAC: 114

Daily use of non-
aspirin NSAIDs

OR = 0.30 
(0.10-0.91)

Daily use of low-
dose aspirin

OR = 1.21 
(0.52-2.83 )

Non-aspirin 
NSAIDs

  Beales et al[37] Case-
control

BE: 170
EAC: 85

Statins + aspirin
OR = 0.31 
(0.04-0.69)

Statins + 
aspirin

  Nguyen et al[38] Case-
control

BE: 696
EAC: 116

All NSAIDs
OR = 0.64 
(0.42-0.97)

All NSAIDs

  Vaughan et al[39] Cohort BE: 350
1731 PY  

All NSAIDs
OR = 0.20 
(0.10-0.41)

All NSAIDs

  Kastelein et al[40] Cohort BE: 570
4.5years

Non-aspirin 
NSAIDs

OR = 0.50 
(0.26-0.97)

Aspirin
OR = 0.67 
(0.31-1.46)

Non-aspirin 
NSAIDs

  Nguyen et al[41] Cohort BE: 344
2620 PY

All NSAIDs
OR = 0.51 
(0.25-1.04)

None

  Gatenby et al[42] Cohort BE: 650
3683 PY

Non-aspirin 
NSAIDs

OR = 0.90 
(0.34-2.37)

Aspirin
OR = 0.72 
(0.41-1.31)

None

  Kantor et al[43] Cohort BE: 411
2805 PY

All NSAIDs
OR = 0.46 
(0.34-1.10)

None

Table 1  Available epidemiological evidence of benefit of non-
steroidal anti-inflammatory drugs and aspirin in prevention 
of esophageal adenocarcinoma in patients with Barrett’s 
esophagus 

PY: Patient years; EAC: Esophageal adenocarcinoma; BE: Barrett’s 
esophagus; NSAIDs: Non-steroidal anti-inflammatory drugs.
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is associated with an increased production of  prostaglan-
din E2 (PGE2), which is known to modulate cell prolif-
eration, cell death and tumor invasion in many types of  
cancer. In addition to COX overexpression, pulsed acid 
exposure can up-regulate microsomal PGE synthase 1 
and through it, PGE2 production and cell proliferation. 
Acid-induced microsomal PGE synthase 1 over-expres-
sion depends on NADPH oxidase 5S activation and NF-
kB1 over-expression[68] and it is regulated through the 
increase of  cytosolic calcium[69]. Epidemiological data 
suggest that the acid related route of  PGE2 production 
is of  minor importance since COX-2 inhibitors can be 
effective even under inadequate acid suppression[23]. 

PGE2 acts through different membrane receptors 
called EP receptors (EP1, EP2, EP3 and EP4). These 
receptors are all located on the cell surface but trigger 
different signaling pathways. Thus, it is known that EP1 
signaling acts through phospholipase C/inositol triphos-
phate signaling, leading to intracellular mobilization of  
calcium. EP2 and EP4 receptors are coupled with G pro-
teins and activate adenylate cyclase, leading to an increase 
of  intracellular cyclic AMP[70]. Cyclic AMP is then able to 
activate various kinases, such as protein kinase A, phos-
phoinositide-3 kinase and glycogen synthetase kinase-3, 
leading to an activation of  β-catenin, a pathway regulat-
ing cell proliferation[71]. Contrary to EP2 and EP4, EP3 is 
coupled with Gi protein, leading to an inhibition of  ad-
enylate cyclase and decreases of  cAMP inside the cells[70]. 
Dietary elements entering arachidonic acid metabolism 
can interfere with PGE2[49] and therefore they should not 
be overlooked. Unfortunately, almost all epidemiological 
studies ignore this parameter[23,37-43].

Cell circle regulatory mechanisms form checkpoints 
where the cell cycle can be stopped after cellular damage 
in order to allow repair and to maintain cellular integrity 
or, alternatively, to eliminate mutated and potentially dan-
gerous cells. Different serine-threonine kinase proteins 
called cyclin-dependent kinases (Cdk) are important cell 
circle regulators. They interfere with the cell cycle by 
phosphorylating many substrates[72]. The inhibitors of  cy-
clin kinase 4 (INK4) family (p16, p15, p18 and p19) and 
the Cip/Kip family (p21, p27 and p57)[72,73] are key regu-
lators of  cell transition from G1 to S phase. INK4 family 
inhibits Cdk4 and Cdk6, whereas Cip/Kip family inhibits 
all Cdks. After DNA damage, p53, a tumor suppressor 
gene, activates transcription of  p21, which inhibits cyclin 
E phosphorylation, leading to hypophosphorylation of  
retinoblastoma protein[71]. After phosphorylation, reti-
noblastoma protein releases transcription factor E2F 
activating genes involved in the S phase-like proliferating 
cell nuclear antigen[74]. p53 also regulates cell transition 
from G2 to M phase through cyclin B-Cdk 2 complex ac-
tivation. Cyclin B-Cdk 2 complex accumulates during the 
previous step of  the cell cycle. It is inactivated by phos-
phorylation at tyrosine 15 and threonine 14 by Wee 1 
and Myt 1 and can be reactivated when these phosphate 
groups are removed by the phosphatase CDC25A, a cy-
clin related phosphatase, when cells enter mitosis[75].

COX-2 up-regulation increases Barrett’s epithelium 

Limited data suggest that biomarkers might have a 
role in identifying those patients with BE who are most 
likely to benefit from chemopreventive therapies. In BE 
patients with DNA content abnormalities, such as 17p 
loss of  heterozygosity (LOH), and/or 9p LOH in their 
esophageal biopsy specimens, NSAID use was associated 
with a significant reduction in the risk of  EAC after 6-10 
years of  follow-up. In contrast, no beneficial effect was 
seen in patients without those abnormalities[54].

MECHANISMS OF NSAID 
CHEMOPREVENTIVE EFFECT
Esophageal carcinogenesis is mainly related to the in-
flammatory process in macroscopically visible Barrett 
epithelium, due to persistent gastroesophageal reflux[47] in 
addition to angiogenesis up-regulation[55]. The inflamed 
mucosa produces several inflammatory intermediates. In-
terleukin-1 and tumor necrosis factor induce nuclear fac-
tor (NF)-kB over-expression[56]. After activation, NF-kB 
translocates to nucleus, where it activates gene transcrip-
tion[57]. In BE patients, NF-kB binds the promoter region 
of  COX-2 gene, increasing COX-2 expression[58]. Most 
observational studies suggest that NSAIDs, in doses 
adequate to suppress COX-2, can effectively prevent BE 
progression to EAC[23,37-40].

Reactive oxygen species may damage DNA, RNA, lip-
ids and proteins, leading to increased mutation and altered 
functions of  enzymes and proteins (e.g., activation of  on-
cogene products and/or inhibition of  tumor suppressor 
proteins). They also related to cellular immunity, signal 
transduction and modification of  extracellular matrix. In 
normal esophagus, low levels of  reactive oxygen species 
are produced in non-phagocytic cells and are thought 
to be by-products of  aerobic metabolism[59]. Pulsed acid 
treatment and bile significantly increases H2O2 produc-
tion in BE cells via NADPH oxidase NOX-5-S over-
expression. It also increases calcium ion influx and cyclic 
adenosine monophosphate (AMP) reactive element 
binding protein[60,61]. Increased cellular calcium ion influx 
causes up-regulation of  NADPH oxidase NOX5-S[62]. 
Overproduction of  reactive oxygen species derived from 
up-regulation of  NADPH oxidase NOX5-S, as well as 
H2O2 overproduction, can up-regulate NF-kB[63] and as a 
result leads to COX-2 over-expression[64].

Because acid and bile contents of  refluxate represent 
the main driving forces for COX-2 over-expression in 
BE patients[65] and because proton pump inhibitors en-
hance COX-2 anti-proliferated effect in vitro and prevent 
vascular endothelial growth factor overexpression[66], 
acid suppression should be an essential cofactor of  EAC 
chemoprevention. This suggestion is also supported by 
epidemiological data[38,40,45]. 

COXs (or prostaglandin H synthases) are a family of  
myeloperoxidases located at the luminal side of  the endo-
plasmic reticulum and nuclear membrane, which catalyze 
the rate-limiting step of  prostaglandin biosynthesis from 
arachidonic acid[67]. COX-2 induction or over-expression 
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and esophageal adenocarcinoma cell proliferation by 
induction of  retinoblastoma tumor suppressor protein 
phosphorylation and up-regulation of  cyclins, cyclin-de-
pendent kinases[76] and p53 LOH[77]. NSAIDs could also 
increase the proportion of  Barrett cells in G0-G1 phase 
and reduce those in S and G2-M phase[78,79]. 

Two major cascades of  intracellular events are com-
monly involved in mediating apoptosis. (1) The intrinsic 
pathway, also called the mitochondrial or stress-induced 
apoptotic pathway, which is activated in response to 
damaging stresses; and (2) the extrinsic, or physiologi-
cal, apoptotic pathway. Typical hallmarks of  the intrinsic 
pathway are mitochondrial outer membrane permeabili-
zation, accompanied by a collapse of  the mitochondrial 
membrane potential[80]. These events lead to the release 
of  cytochrome c into the cytosol and the death complex 
formation by apoptotic protease activating factor-1 and 
procaspase-9. Once recruited, procaspase-9 is cleaved 
to its activated form (caspase-9) to further activate the 
executor caspase-3 and to finalize the apoptotic program. 
The intrinsic pathway can be triggered upon binding of  
specific ligands to death receptors characterized by the 
presence of  a death effector domain[81]. Ligands include 
cytokines, such as tumor necrosis factor α, tumor ne-
crosis factor-related apoptosis inducing ligand-induced 
apoptosis or Fas. After binding, death inducing silencing 
complex is formed. The adaptor proteins, tumor necrosis 
factor receptor-associated death domain and Fas associ-
ated death domain, form the death inducing silencing 
complex that is able to recruit and activate pro-caspase-8. 
The latter activates caspase-3 in order to trigger the final 
steps of  apoptosis.

Cross talks between the two pathways take place. 
The extrinsic apoptotic pathway can activate the intrinsic 
pathway via truncation of  the BH3-only protein Bid by 
caspase-8. BH3-only protein Bid interacts with mitochon-
dria, by favoring the activation of  the pro-apoptotic Bcl-2 
family members Bak and Bax, thus leading to mitochon-
drial outer membrane permeabilization and caspase-9 ac-
tivation[80]. The intrinsic apoptotic pathway may, in turn, 
activate caspase-8, downstream to caspase-3[82]. NSAIDs 
can inhibit programmed cell death in BE cells via preven-
tion of  Bcl-2 suppression[83], a key checkpoint in COX-2 
controlled apoptotic cascade[84].

Anoikis is a form of  apoptosis mediated by the loss 
of  cell anchorage. This pathway plays a fundamental role 
during development and maintenance of  tissue homeo-
stasis by killing damaged cells or detached cells in order 
to maintain tissue architecture. It is dependent on caspase 
activation and cytochrome c release by mitochondria and 
is regulated by Bcl-2 family members[71]. Cell anchorage is 
due to cell-cell and cell-matrix interactions. Cell-cell inter-
actions are mainly mediated by integrins, transmembrane 
receptors located at the cell surface[85]. Many intracellular 
signals can act downstream to integrins, which, correctly 
switched on, can ensure cell survival. Some of  them are 
mediated by kinases such as focal-adhesion-kinase or in-
tegrin-linked kinase. Focal-adhesion-kinase is phosphory-

lated upon integrin adhesion, leading to activation of  
other signaling pathways like phosphoinositide 3 kinase 
and mitogen-activated protein kinase (MAPK)[71].

NSAIDs can up-regulate MAPK signaling cascade[86] 
through Cl/HCO3 membrane exchange channel after in-
tracellular acidification[87]. COX-2 inhibitors can regulate 
mesenchymal-epidermal cross talk[88]. In non-dysplastic 
Barrett, COX-2 is selectively increased only in stromal 
cells, while in adenocarcinoma it is also increased in neo-
plastic epithelium[89,90]. 

COX-2 can also regulate the expression of  angioge-
netic factors, especially vascular endothelial growth fac-
tor[90], mainly through a MAPK dependent pathway[91]. 
Because reactive oxygen species are overproduced in 
the ischemic tissue[92] and various angiogenic factors 
are abundant in patients with cardiovascular diseases[93], 
NSAIDs are expected to be more effective in this patient 
group. Nevertheless, non-aspirin NSAID are not effec-
tive in BE patients with ischemic heart disease, while as-
pirin is especially effective in this patient group[53].

Although low-dose aspirin clearly prevents EAC when 
prescribed in healthy controls, it suppresses COX insuf-
ficiently[34]. Thus, apart from COX-related, there are also 
other mechanisms implicated in NSAID chemopreven-
tive action. Epidemiological data doubt the significance 
of  COX-independent mechanisms[23,37-43].

Independently to COX, NSAIDs can bind and inhibit 
protein kinase B/Akt, an important mediator of  cell 
proliferation and in apoptosis. Protein kinase B is able 
to phosphorylate Cdk inhibitors, such as p21 and p27, 
leading to proliferating cell nuclear antigen activation[94]. 
Moreover, it inhibits apoptosis by phosphorylating the 
pro-apoptotic protein Bad and by inhibiting caspase-9 
cleavage[80]. Independently to COX, NSAIDs can also 
activate the extrinsic apoptotic pathway by modulating 
the sensitivity of  several tumor cells to Fas and tumor 
necrosis factor-related apoptosis inducing ligand[95]. They 
can also up-regulate Bax expression and mitochondrial 
cytochrome c translocation[96]. Finally, NSAIDs are able 
to decrease intracellular content of  glutathione, the most 
important intracellular non-protein antioxidant defense 
against free radicals and, in such a way, affect both cell 
proliferation and apoptosis[97].

Although in vitro studies suggest that NO-aspirin is 
more effective than aspirin to prevent Barrett cell hyperp-
roliferation[98], this did not prove to be the case in a clini-
cal study[23]. 

COST-EFFECTIVENESS AND 
SIDE EFFECTS OF NSAIDS 
CHEMOPREVENTION
Assuming that aspirin use can reduce EAC development 
risk by 50% in BE patients, the cost of  the chemo-pre-
ventive intervention was calculated to 40000 Euros for 
every quality year of  life saved[28].

NSAIDs clearly have substantial potential for toxic-
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ity, including serious gastrointestinal and cardiovascular 
side effects that should be balanced with their potential 
cancer-preventive effects. Generally the risk for low-dose 
aspirin is low. A meta-analysis of  randomized controlled 
trials comparing low-dose aspirin (75-325 mg) and pla-
cebo for cardiovascular prophylaxis found that the ab-
solute annual increase in risk attributable to aspirin was 
only 0.13% (95%CI: 0.08-0.20) for major bleeding, 0.12% 
(95%CI: 0.07-0.19) for major gastrointestinal bleeding, 
and 0.03% (95%CI: 0.01-0.08) for intracranial bleeding[99]. 
Moreover, concomitant proton pump inhibitor therapy 
could reduce the risk of  gastrointestinal bleeding by a 
factor of  2 to 9[100,101]. 

We have shown that complications, including upper 
gastrointestinal bleeding, esophageal ulcers and benign 
esophageal strictures, were no more common in NSAID 
users with BE than NSAID non-users. Moreover, the 
majority of  those complications were acid related and 
could be prevented by adequate acid suppression, prefer-
entially with high dose proton pump inhibitors. On high 
dose proton pump inhibitors, only 14% of  BE patients 
consuming NSAIDs presented with any complication[23]. 
In accordance to our findings, Hillman et al[102] have 
shown that esophageal ulcers and stenosis can be effec-
tively prevented with adequate acid suppression[102]. 

Because thromboxane biosynthesis depends on sus-
tained inhibition of  COX-1, several NSAIDs present se-
rious cardiovascular side effects. In the two meta-analyses 
published today, major vascular events were increased 
by about a third for COX-2 selective and non-selective 
NSAIDs, with the exception of  naproxen. Analyses 
showed that the excess risk was mainly attributable to 
an increase of  about three quarters in the risk of  major 
coronary events. Vascular death increased by about two-
thirds, heart failure risk roughly doubled, while risk for 
stroke was not affected[103,104].

Nitro-NSAIDs represent an NSAID subclass with 
lower risk for gastrointestinal bleeding[105]. We have 
shown that combination of  NSAID use to nitrates in BE 
patients neither affected EAC risk nor improved NSAID 
safety profile[23].

STATINS AND EAC CHEMOPREVENTION
Cellular effects of  statins on EAC cell lines have been 
evaluated in three in vitro studies. All reported anti-prolif-
erative and pro-apoptotic effects[106-108]. Qresearch, a pro-
spective study based on 24 general practice research da-
tabases from England and Wales, have shown that statins 
were protective against esophageal cancer development 
in both men and women. The risk of  esophageal carci-
noma decreased in both men and women prescribed sim-
vastatin, as well as in men prescribed atorvastatin. There 
were inadequate data for other statins. There was some 
evidence of  a dose-response associated with simvastatin 
in men only[109]. A more recent analysis of  the same data-
base revealed no protective effect from statin use[110]. An 
analysis of  General Practice United Kingdom Research 

Database in 2002 that included only 9 esophageal car-
cinoma cases revealed no protective effected related to 
statin use[111]. Bhutta et al[112] case control study found that 
statin use was negatively associated with the development 
of  esophageal carcinoma. Both lipophilic and hydrophilic 
statins were protective. The magnitude of  this negative 
association was similar for time periods extending beyond 
one year. When statin use and cancer development was 
accessed through a health care program database from 
northern Calofornia, esophageal carcinoma was more 
common among statin users[113]. Population studies pub-
lished today, although they have been adjusted for many 
covariates including age, body mass index, smoking, do not 
differentiate between EAC and squamous carcinomas and 
do not allow evaluation of  statin use in EAC prevention. 

Three population studies[110-112] were included in the 
meta-analysis of  risk of  esophageal carcinoma among 
general population cohorts with statin use. The pooled 
effect size was 0.86 (95%CI: 0.78-0.94, P = 0.001) with 
minimal heterogeneity[114]. A recent meta-analysis of  all 
published studies calculated the pooled effect size for statins 
to 0.81 (95%CI: 0.75-0.88) with substantial heterogeneity[48].

Several observational studies evaluating NSAIDs che-
mopreventive effect have also analyzed the utility of  statin 
use (Table 2). In their case control study, Beales et al[37] found 
that regular statin use was associated with a significantly 
lower incidence of  EAC. Longer duration of  statin use 
and higher doses were both associated with a significantly 
greater reduction in EAC. Kastelein et al[40] reported that 
statin use for greater than one mo was associated with 
a statistically significant inverse risk for neoplastic pro-
gression, although this was only observed in men over 
60 years of  age. The concomitant use of  both statins 
and NSAIDs was associated with a greater risk reduc-
tion. Nguyen et al[41] reported that having any filled statin 
prescription was associated with 45% lower risk of  EAC. 
Patients with a cumulative filled statin prescription for > 
12 mo have a reduced risk of  EAC compared to those 
with ≤ 12 mo or those with no statin prescription. Kan-
tor et al[43] found that statin use was not associated with 
a reduced risk of  neoplastic progression in BE patients. 
Nevertheless, when the analysis was limited to persons 
with high-grade dysplasia at baseline, a subgroup at 
particularly high risk of  EAC development, statin use 
was definitively protective. The combination of  statins 
and NSAIDs was also protective. The main draw back 
of  most observational studies was that authors did not 
adjust for important covariates, namely body mass index 
and smoking[40,41,43].

Kastelein et al[40] and Nguyen et al[41] cohort studies 
were included in the meta-analysis of  risk of  EAC. The 
pooled effect size was 0.53 (95%CI: 0.36-0.78, P = 0.001) 
with minimal heterogeneity[115]. A recent meta-analysis, 
including all 5 studies published today, calculated the 
pooled effect size for statins to 0.57 (95%CI: 0.43-0.75) 
with minimal heterogeneity. For the combination of  
statins and COX inhibitors, pooled effect size was 0.26 
(95%CI: 0.10-0.68)[48]. 
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At present, there are no published observational 
studies evaluating statin chemopreventive effect in BE 
patients in the general population. Moreover, there are no 

interventional studies underway.

MECHANISMS OF STATIN 
CHEMOPREVENTIVE EFFECT
Statins competitively inhibit 3-hydroxy-3-methylglutaryl 
coenzyme A reductase, the rate-limiting enzyme in the 
biosynthesis of  cholesterol. Although this is their most 
appreciated biological action, statins have several other 
important roles. They inhibit biosynthesis of  L-mevalon-
ate[116], a precursor of  cholesterol, and they produce two 
isoprenoid intermediates: farnesyl pyrophosphate and ge-
ranylgeranyl pyrophosphate[117]. Farnesyl pyrophosphate 
and geranylgeranyl pyrophosphate attach to several cel-
lular proteins including G proteins by a posttranslational 
modification termed isoprenylation. The isoprenylation 
of  G proteins is crucial for membrane attachment and 
normal functioning. The low molecular weight G pro-
teins, including Ras, Rho, Rab and Cdk 42, play crucial 
roles in signal transduction and therefore influence im-
portant cellular functions, such as proliferation, apoptosis 
and differentiation. Ras represents the most important G 
protein and is predominantly farnesylated, while all other 
GTPases are predominantly geranylated. Ras mutations 
in preneoplastic cells determine their susceptibility to 
statin treatment[118]. Because Ras in EAC cells is very sus-
ceptible to statin treatment[106], statins are very effective in 
all available epidemiological studies[37,40,41,43].

Ras pathway down-regulation could reduce phos-
phoinositide 3 kinase/Akt and extra-cellular signal regu-
lating kinase activities, enhancing cell proliferation and 
modulating cell-cell interactions. Moreover, it up-regu-
lates the pro-apoptotic proteins Bad and Bax through 
phosphoinositide 3 kinase/Akt pathway, preventing cell 
apoptosis[106,107,118-120]. Through Ras modification, statins 
attenuate total cellular and cell-surface intracellular adhe-
sion molecule-1 expression and activate NF-kB[121]. 

Through a G-protein independent mechanism, statins 
can suppress angiogenesis. Angiogenesis inhibition is a 
result of  the inhibition of  the expression or activity of  
monocyte chemoattractant protein-1, inhibition of  me-
talloproteinase, angiotensin-2, preproendothelin gene, as 
well as inhibition of  actin filament and by focal adhesion 
molecules formation[122]. Finally, they present with an an-
ti-inflammatory effect by reducing tumor necrosis factor-
alpha[107] and intracellular adhesion molecule-1 (a critical 
adhesion molecule involved in transendothelial tumor cell 
migration)[123,124].

Because statins do not interfere with various prolif-
eration pathways, such as MAPK pathway and transcrip-
tion factor AP1/c-jun terminate kinase[106], NSAIDs can 
enhance statin chemopreventive effect by blocking those 
metabolic routes[125]. As a result, whenever statins and 
NSAIDs are combined, lower doses of  either chemo-
preventive agent are necessary, leading to a reduction of  
side effects[106]. Current epidemiological data unanimously 
verify NSAID and statin synergy[37,40,41,43]. 

  Ref. Type 
of study

Size-follow-
up

Effect on EAC 
rate

Benefi-
cial 

effect

  Hippisley-
  Cox et al[109]

Population 
based

General 
population

2004692 
cases

Statins
Men1

OR = 0.78 
(0.66-0.91) 
Women1 
OR = 0.68 
(0.52-0.88)

Simvastatin
Men1 OR = 0.69 

(0.50-0.94) 
Women1 OR = 0.82 

(0.68-0.99)
Atorvastatin

Men1

OR = 0.73 
(0.55-0.96)
Women1

OR = 0.73 
(0.47-1.13)

Statins1

  Vinogradova et al[110] Population 
based

General 
population

2004692 
cases

Statins1

OR = 0.88 
(077-1.01)

None1

  Kaye et al[111] Population 
based

Esophageal 
cancer: 9

Statins2

OR = 0.8 (0.3-1.8)
None2

  Bhutta et al[112] Population 
based

Esophageal 
cancer: 4242

Controls:
17233

Statins1

OR = 0.84 
(0.73-0.95)

Lipophylic statins1

OR = 0.86 
(0.75-0.98)

Hydrophilic 
statins1 OR = 0.71 

(0.51-0.98)

Statins1

  Beales et al[37] Case-
control

BE: 170
EAC: 85

Statins
OR = 0.57 
(0.28-0.94)

Statins

  Kastelein et al[40] Cohort BE: 570
4.5 years

Statins
OR = 0.46 
(0.21-0.99)

Statins + NSAIDs
OR = 0.22 
(0.06-0.85)

Statins
Statins + 
NSAIDs

  Nguyen et al[41] Cohort BE: 344
2620 PY

Statins
OR = 0.55 
(0.36-0.86)

Statins

  Kantor et al[43] Cohort BE: 411
2805 PY

Statins
OR = 0.68 
(0.30-1.54)

Statins + NSAIDs
OR = 0.41 
(0.13-1.26)

Statins + 
NSAIDs

Table 2  Available epidemiological evidence of benefit of statin 
use in prevention of esophageal adenocarcinoma in patients 
with Barrett’s esophagus

1Results pertain to esophageal carcinoma; 2Results pertaining to all 
cancers. PY: Patient years; EAC: Esophageal adenocarcinoma; BE: Barrett’s 
esophagus; NSAIDs: Non-steroidal anti-inflammatory drugs. 
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Because adiponectin and ghrelin can interfere in vitro 
with EAC cell apoptosis[126], obesity, a parameter over-
looked by most observational studies[40,41,43], mandates 
further attention.

SIDE EFFECTS OF STATIN 
CHEMOPREVENTION
Statins are generally safe medications. Out of  the various 
adverse effects of  statins, only liver and muscle-related 
toxicity is consistently reported[127]. Between 1987 and 
2001, the Food and Drug Administration (FDA) record-
ed 42 deaths from rhabdomyolysis induced by statins, 
translated to one death per million prescriptions (30 day 
supply). Although 5%-10% of  patients complain of  mus-
cle symptoms, only 1%-3% of  them are actually statin 
related. Muscle symptoms usually occur within the first 
6 mo of  starting statins but can occur months or years 
after the initiation of  statin therapy and automatically 
resolve within 2 mo of  discontinuing statin therapy[128]. 
The incidence of  statin-associated myopathy is quite low 
(approximately 0.01%) and rhabdomyolysis even lower 
(0.002%)[129]. Fatal rhabdomyolysis has been estimated to 
occur in approximately 1.5 in 10 million prescriptions[130].

Post-marketing surveillance studies of  statins revealed 
that elevation in hepatic aminotransferases are dose re-
lated, mild and unrelated to low-density lipoprotein low-
ering effect. Thus, most hepatologists no longer consider 
statins to have any significant hepatotoxicity[131]. Although 
serious hepatotoxicity is rare, 30 cases of  liver failure 
associated with statin use were reported to the FDA be-
tween 1987 and 2000, the rate being about one case per 
million person-years of  use. Thus, the occurrence of  
acute liver failure thought to be caused by statins is well 
below the background rate of  idiopathic acute liver fail-
ure in the general population[132].

Evidence from four cohort studies and case reports 
suggest that statins cause reversible peripheral neuropa-
thy. Nevertheless, the attributable risk is small (12 per 
100000 person-years) and no change in cognitive func-
tion was found in randomized trials of  statins in elderly 
patients[130].

Because BE patients are usually old with various 
multi-systemic comorbidities[36], increased toxicity is ex-
pected[133] with statin use. No study today has specifically 
addressed statin toxicity in BE patients. 

FUTURE DIRECTIONS
The poor prognosis of  patients diagnosed with EAC 
presents a challenge to the clinician. Consequently there 
is burgeoning interest in potential chemo-preventive 
strategies. Considerable evidence of  medium quality is 
available of  a protective effect of  NSAIDs, yet because 
of  their side-effect profile, widespread use cannot be cur-
rently justified. Although statin safety profile is good, epi-
demiological and animal data are limited to justify their 
use as chemo-preventive agents. Because mortality due to 

cardiovascular disease is high in BE patients, “technical 
review on the management of  Barrett’s esophagus today” 
suggests screening for cardiovascular factors in BE pa-
tients and aspirin and statin use as warranted[45]. Because 
we have shown no benefit for non-aspirin NSAID use in 
BE patients with ischemic heart disease[53] and substan-
tial cardiovascular side effects are expected[103,104], use of  
non-aspirin NSAIDs should be withheld in patients with 
BE and cardiovascular co-morbidities, at least until more 
clinical data might justify their use. 

Large randomized control trials in the near future 
are expected to safely evaluate NSAIDs and statins as 
chemopreventive agents and possibly introduce their 
widespread use in patients with BE. Because of  their syn-
ergistic effect[106], such trials ought to test either and both 
medications against proton pump inhibitors alone.
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