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structure of the article and its general outline is correct. The literature review is appropriate (61 

references) and with a good level of upgrade (more than 50% in the last 5 years).   There are no 
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We will focus on resistance to targeted therapy in lung cancers harboring EGFR mutations where 
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these drugs is limited by the universal development of resistance. Treatment failure can result from 

inadequate drug exposure or selection of resistant malignant clones. Clinically distinct mechanisms 

of disease progression have been identified and can inform treatment decisions. Investigations into 

the biochemical mechanisms of tyrosine kinase inhibitor resistance may provide additional 

therapeutic targets by which the efficacy of targeted therapy can be improved.  

 

Key words: EGFR mutation, tyrosine kinase inhibitor, lung cancer, adenocarcinoma, resistance, 

targeted therapy 

 

Conflict of interest statement: Dr. Kevin Becker has received fees for serving as a speaker for 

Genentech.

批注  [U1]: The article is  a good  rev iew of a cu rren t p rob lem and  clin ical relevance: the development o f res is tance to  a clearly  effective treatmen t (ty ros ine k inase inh ib ito rs) in  patien ts  with  adenocarcinoma and  EGFR mutation  model. 

批注  [U2]: 18  Words 



 

4 

 

BAISHIDENG PUBLISHING GROUP INC 

8226 Regency Drive, Pleasanton, CA 94588, USA 
Telephone: +1-925-223-8242         Fax: +1-925-223-8243 
E-mail: editorialoffice@wjgnet.com   http://www.wjgnet.com 
 

 

Tyrosine kinase inhibitor resistance and clinical management in non-small cell lung cancer with 

epidermal growth factor receptor mutations 

 

 

In the treatment of lung adenocarcinoma, drugs that inhibit unique driver mutations have proven 

superior to conventional chemotherapy in molecularly-defined subgroups, altering treatment 

paradigms and research agendas. The observation that dramatic responses to erlotinib or gefitinib 

occurred in patients with epidermal growth factor receptor (EGFR) mutations affirmed the concept of 

“oncogene addiction[1]” in non-small cell lung cancer: despite the complexity of genetic and 

epigenetic changes in malignant cells, interfering with the activity of a single dominant oncogene can 

induce tumor regression. Translating this concept into clinical benefit required identification of the 

driver mutations to which the cancers are “addicted” and the development of drugs capable of 

selectively blocking their activity. Mutually exclusive driver mutations can be detected in 

approximately 60% of lung adenocarcinomas through multiplexed testing techniques[2]. Single agent 

anti-tumor activity has been reported with drugs that inhibit the kinase activity of EGFR, EML4-ALK, 

ROS1, HER-2, BRAF, RET and MET [3,4,5,6,7,8,9]. Moreover, targeted therapy with afatinib, gefitinib or 

erlotinib in EGFR-mutated lung cancer and crizotinib in lung cancer harboring EML4-ALK 

translocations have demonstrated clinically significant improvements in response rates, 

progression-free survival (PFS) and quality of life when compared with standard 

chemotherapy[3,10,11,12,4]. In the LUX-Lung 3 trial, for example, afatinib produced longer PFS (11.1 

versus 6.9 months) and higher response rates (56% versus 23%) compared with pemetrexed and 

cisplatin in the first-line treatment of patients with EGFR mutations[3]. Based on these results, practice 

guidelines recommend targeted therapy as first-line treatment for lung cancers with EGFR mutations 

or ALK translocations[13]. Unfortunately, this therapeutic success is invariably temporary as all 

patients ultimately develop resistance to currently available targeted therapies. The goals of this 

review are therefore to 1) examine the mechanisms of failure of tyrosine kinase inhibitors (TKIs) and 
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2) discuss the strategies for preventing or overcoming resistance that are currently in development. 

We will focus on resistance to targeted therapy in lung cancers harboring EGFR mutations where 

these concepts are best characterized, though some concepts may be applicable to targeted therapy in 

general.  

 

Differentiating drug resistance from pharmacokinetic failure  

 

The first step in identifying the mechanism of treatment failure is to differentiate pharmacokinetic 

failure from true drug resistance. Pharmacokinetic failure refers to disease progression due to 

inadequate drug exposure. True drug resistance occurs when malignant cells survive and divide in 

the presence of therapeutic drug levels and can be further characterized as intrinsic or acquired. In 

cases of pharmacokinetic failure, interventions to achieve therapeutic drug levels may effectively halt 

or prevent disease progression.  

 

Pharmacokinetic failure 

 

Interactions  

 

Gefitinib and erlotinib are metabolized by the cytochrome p450 system and therefore have the 

potential for numerous interactions (Table 1). Concurrent medications and homeopathic remedies 

that induce p450 enzymes may lower systemic drug levels of these targeted therapies. The clinical 

significance of such interactions is demonstrated in the published case of a patient with advanced 

EGFR-mutated lung cancer that did not respond to initial treatment with erlotinib while concurrent 

medications included fenofibrate, a CYP3A4 inducer [14]. Serum trough levels of erlotinib were 

sub-therapeutic and disease regression was achieved after dose escalation resulting in therapeutic 

drug concentrations. Furthermore, current smokers have increased clearance of erlotinib, likely due 

批注  [U3]: Clear and  correct in troduction . Adequately  ind icated  the two  ob jectives  o f the rev iew. 

批注  [U4]: In troduce 
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to induction of CYP1A2 and CYP1A1[15] and similar interactions are possible with gefitinib based on 

pharmacokinetic studies[16]. In a study to determine the maximum tolerated dose of erlotinib in 

patients currently smoking at least 10 cigarettes daily, the trough plasma concentration and toxicity 

profile at 300mg daily was similar to the standard dose of 150mg in non-smokers[15]. In patients 

taking erlotinib who cannot achieve smoking cessation, dose escalation to 300mg daily as tolerated is 

recommended[17]. Afatinib undergoes minimal metabolism by the cytochrome P450 system but is a 

substrate of p-glycoprotein. P-glycoprotein inducers may therefore lower systemic drug 

concentrations of afatinib[18]. As oral drugs, gastric contents and pH may also impact bioavailability. 

Afatinib absorption is reduced when taken with a high fat meal whereas erlotinib absorption is 

increased and patients are directed to take both medications on an empty stomach. Drugs that 

increase gastric pH can reduce absorption of erlotinib and gefitinib, and have been shown to lower 

drug levels[17,19]. When patients require antacid therapy, twice-daily histamine receptor blockers are 

recommended over proton pump inhibitors when possible and patients are advised to take erlotinib 

ten hours after the last dose and two hours prior to the next dose to minimize the effect on 

absorption[17]. 

 

Blood-brain barrier 

 

Central nervous system (CNS) involvement in the form of brain or leptomeningeal metastases is 

common in patients with advanced non-small cell lung cancer, either at the time of diagnosis or as a 

site of disease progression. The blood-brain barrier restricts most large and hydrophilic substances 

from passing from the circulation into the CNS. The cerebrospinal fluid (CSF) to plasma 

concentration ratios for erlotinib and gefitinib have each been shown to be less than 0.01[20,21]. While 

confirming the reduced penetration of these drugs into the CNS, these measurements likely 

underestimate the exposure of brain metastases to each of these drugs due to local disruption of the 

blood-brain barrier in abnormal tumor vasculature. Despite CSF concentrations that would predict 
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subtherapeutic drug exposure, radiographic responses have been observed in brain metastases 

treated with erlotinib, gefitinib and afatinib at standard doses[22,23]. Moreover, dose escalation of 

gefitinib or high-dose weekly erlotinib can increase drug levels in the CSF and reverse CNS disease 

progression that occurred during standard dosing. In one case report, a patient with an exon 19 

mutation exhibited progressive brain and leptomeningeal metastases despite systemic disease control 

on gefitinib. The gefitinib concentration in the CSF was found to be less than that required to inhibit 

the growth of a cell line derived from the patient’s tumor. After dose escalation to 1000mg daily, the 

CSF concentration of gefitinib exceeded the half maximal inhibitory concentration and the patient 

experienced radiographic and symptomatic improvement with clearing of malignant cells from the 

CSF [20]. Since sustained escalated doses of erlotinib are poorly tolerated, high-dose weekly 

administration was investigated as a strategy to improve erlotinib CNS penetration. In a retrospective 

series of nine patients with CNS progression while on standard dose erlotinib, the CNS response rate 

to 1500mg once weekly was 67% [24]. 

 

Defining mechanisms of drug resistance 

 

True drug resistance, the survival and proliferation of malignant cells in the presence of therapeutic 

drug levels, is observed to varying degrees in all EGFR-mutated lung cancers. The complete response 

rates for currently available agents are less than 5% suggesting the presence of intrinsic resistance in a 

population of tumor cells of most patients at the time of treatment initiation. Furthermore, disease 

progression after initial response occurs due to emergence of acquired resistance with median PFS 

ranging from 9 to 13 months in clinical trials. Given that some factors present at the time of diagnosis 

can predict both reduced probability of response and shorter duration of response, there is clearly 

overlap between the mechanisms of intrinsic and acquired resistance.  

 

The response to EGFR-targeted therapy varies according to EGFR mutation. 
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Both the probability and the duration of response to EGFR-targeted therapy vary according to the 

specific EGFR mutation.  Activating EGFR mutations occur within exons 18-21 of the tyrosine kinase 

binding domain. Exon 19 deletions and L858R point mutations in exon 21 comprise 85-90% of EGFR 

mutations and most reliably predict response to EGFR-targeted therapy[25]. For this reason, FDA 

approval for first-line therapy with erlotinib or afatinib is limited to cancers harboring these 

mutations. However, differential sensitivity within this group has been observed: patients harboring 

exon 19 deletions show longer progression free survival compared with patients with L858R 

mutations[26,27], despite similar in vitro activity[28]. The reasons for the differences in clinical activity 

observed are not clear. 

 

The efficacy of EGFR TKIs in the treatment of uncommon EGFR mutations is less predictable, in part 

due to their relative rarity. This is a heterogeneous group that includes exon 20 mutations, exon 19 

insertions, exon 21 missense mutations (other than L858R), and exon 18 point mutations[25]. The data 

on TKI efficacy in these cancers is limited to subset analyses of larger trials, small series and case 

reports. No partial responses were observed in patients with uncommon EGFR mutations in a phase 

II trial of first-line gefitinib, although some patients achieved prolonged stable disease [29]. In the 

LUX-lung 3 trial of first-line treatment with afatinib versus pemetrexed and cisplatin, the progression 

free survival of patients treated with afatinib was improved when less common mutations were 

excluded from the analysis, suggesting a higher prevalence of intrinsic or acquired resistance in this 

group[3]. Exon 20 mutations in particular are generally associated with clinical resistance to all 

currently available EGFR TKIs. However, even within the group of tumors bearing exon 20 

mutations there is heterogeneity and responses to EGFR TKIs have been observed with selected 

mutations[30].  

 

EGFR mutation abundance and heterogeneity 
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EGFR activating mutations occur de novo during tumor development and heterogeneity with regard 

to EGFR mutation status in a particular tumor nodule has been reported[31,32].  While conventional 

DNA sequencing can detect an EGFR mutation present in at least 10% of tumor cells, a more sensitive 

method, the Scorpion amplification refractory mutation system (ARMS; DxS, Manchester, United 

Kingdom) uses unimolecular fluorescent probes to detect mutations present in 1-10% of cells[33].  In a 

retrospective study of 100 randomly selected archived cases, treatment with EGFR TKIs achieved a 

longer progression free survival of 11.3 months in patients whose tumor demonstrated high EGFR 

mutation abundance (more than 10%) than those with low EGFR mutation abundance (1-10%, PFS 6.9 

months) and the PFS in both cases were longer than that in patients with wild type tumors (PFS 2.1 

months)[34].   This notion that higher EGFR mutation abundance in the tumor correlates with 

treatment effect in prolonging tumor control requires prospective validation.  The heterogeneity of 

EGFR mutation status is not only observed in the primary tumor, but also between the primary and 

the metastatic lung nodules, with a discordance rate as high as 24%[35].  The cases with discordance 

appear to show mixed response to EGFR TKIs[35].  Therefore, genetic heterogeneity could be another 

mechanism for apparent TKI resistance at tumor progression.  

 

Additional pathways that modulate response to targeted therapy 

 

Several additional pathways appear to influence the depth and duration of response to TKIs in 

patients with EGFR-mutated tumors and provide new targets for improving therapeutic efficacy. The 

pro-apoptotic protein BIM has been shown to be necessary for EGFR TKI-induced apoptosis and 

tumor regression in EGFR-mutated cell lines and xenograft models[36,37]. In a small retrospective 

series, treatment with an EGFR TKI was associated with a higher response rate (57% versus 29%, 

p=0.04) and longer PFS (13.7 versus 4.7 months, p= 0.007) in patients whose tumors showed higher 

pre-treatment levels of BIM RNA [38]. An intronic deletion polymorphism of BIM found in 12% of East 
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Asian patients and associated with reduced anti-apoptotic activity correlated with inferior response 

to EGFR TKIs[39]. In cell lines and xenografts with this polymorphism, restoration of BIM function 

with BH3-mimetic drugs or HDAC inhibition overcame TKI resistance[40,39]. This suggests that 

therapeutic strategies to augment BIM function, particularly in low-BIM expressing tumors, may 

reduce the problem of TKI resistance in oncogene-addicted tumors. In addition, activation of the 

NF-KB pathway has been shown to confer in vitro resistance to erlotinib in EGFR-mutant cell lines. 

Patients whose tumors showed high expression of the NF-KB inhibitor I-KB were more likely to 

respond to treatment with erlotinib and had longer progression free and overall survival, suggesting 

that NF-KB signaling may have a clinically significant role in EGFR TKI resistance[41]. Therefore, 

combined EGFR and NF-KB inhibition presents another potential opportunity for improving the 

efficacy of targeted therapy. 

 

 

 

 

Acquisition of secondary EGFR mutations  

 

An important strategy for defining mechanisms of resistance to EGFR TKIs has been to re-biopsy the 

tumor at the time of disease progression. In two reported series comprising 192 patients treated with 

erlotinib or gefitinib, a distinct histologic change or molecular mechanism of resistance could be 

identified in the majority of cases [42,43]. Importantly, all TKI-resistant tumors retained the original 

EGFR mutation. In over half of tumors analyzed, a second EGFR point mutation, T790M in exon 20, 

was newly detected. T790M mutations are thought to reactivate EGFR signaling by increasing the 

receptor’s affinity for ATP over TKIs [44]. Though a systematic analysis of the mechanisms of 

resistance to afatinib has not yet been published, resistance due to emergence of T790M has been 

reported [45].  
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EGFR-independent mechanisms of acquired resistance 

 

Signaling through alternate oncogenic kinases can bypass EGFR inhibition to re-activate proliferation 

and survival pathways in EGFR-mutated cells. Amplifications of MET and HER2 were identified in a 

minority of resistant tumors examined in the two re-biopsy series mentioned above [42,43,46]. In one of 

the studies, PIK3CA mutations were also identified in two patients[42]. Furthermore, an analysis of a 

large tissue database identified BRAF mutations as a possible mechanism of resistance in 2% of 

specimens [47]. In addition, histologic changes such as transformation to small cell histology and 

epithelial to mesenchymal transition have also been observed, though the mechanisms by which they 

develop and lead to resistance are incompletely understood [42,43]. So far, mechanisms of resistance 

have been studied in a limited number of tumors and therefore the prevalence of each resistance 

mechanism is likely to change as more data accrues.  

 

Clinical management of TKI-resistant disease 

 

When a patient who previously responded to a TKI develops progression of disease, acquired TKI 

resistance occurs due to the various mechanisms described above.  Although its clinical utility is 

debated, re-biopsy at progression in selected cases could be critical to understanding the mechanism 

of TKI resistance and hence guide management decisions.  While it is standard practice to 

discontinue chemotherapy at the time of disease progression, there is definitely a rationale for TKI 

continuation as discussed below. Treatment options include adding local therapy or conventional 

chemotherapy, or TKI continuation alone. Two hypotheses guide current strategies for treatment of 

TKI-resistant disease: 1) a population of TKI-sensitive clones remains at the time of disease 

progression and 2) Resistant clones may be detected radiographically before widespread 

dissemination occurs. 
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As discussed above, the T790M secondary mutation is by far the most common mechanism of 

resistance, responsible for disease progression in more than half of patients treated with erlotinib or 

gefitinib. In vitro data has demonstrated that cells that acquire T790M second site mutations grow at 

a slower rate than parental cells without the mutations[48]. Furthermore, the same study suggested 

that in the presence of TKIs, resistant cell populations are heterogeneous and consist of slow-growing 

cells harboring T790M along with quiescent cells without the secondary mutation.  Clinical 

observations support these in vitro results. In two patients with acquired TKI resistance and T790M 

mutations, serial biopsies during treatment with and without TKIs showed that T790M becomes 

undetectable after a period without TKI treatment [42]. Moreover, patients with T790M mutations 

identified at the time of disease progression have longer post-progression survival than those 

without the mutation[49].  Presumably, continuation of the original TKI exerts selective pressure that 

inhibits more aggressive TKI-sensitive clones and allows only the indolent T790M-harboring cells to 

proliferate.  Therefore, in patients with T790M-mediated resistance or asymptomatic patients with 

radiographic evidence of progression and limited overall increase in disease burden, immediate 

change of systemic therapy may not be necessary and continuation of targeted therapy may still 

provide some measure of disease control.   

 

It is conceivable that TKI-resistant clones develop in a single site of disease and can be detected on 

imaging before widespread dissemination. Patients who initially achieve disease control with 

EGFR-targeted therapy may subsequently show signs of disease progression in only one or a few 

sites of disease while other sites remain suppressed. Several groups have described their experience 

with the use of local therapies such as radiation or surgery to these sites of limited disease 

progression and have observed prolonged disease control after local therapy without a change in 

systemic therapy[50,51,52]. Progression-free-survival after local therapy of 6-10 months[50,51] has been 

reported and the time until change in systemic therapy in one study was 22 months[50]. Clearly, 
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patient selection is key to the success of this strategy. Factors that might predict prolonged stable 

disease after local therapy include EGFR exon 19 deletions and longer duration of initial disease 

control on targeted therapy[52]. These observational studies suggest that local therapy may be of 

benefit, though prospective trials are needed to determine whether local therapy can truly alter 

disease course.    

 

In patients with symptomatic or rapid radiographic progression, re-biopsy of a rapidly growing 

lesion should be considered.  If transformation to small cell histology is discovered, small cell 

chemotherapy regimens are appropriate for those patients.  The remaining majority of patients are 

generally treated with chemotherapy.  In this group of patients, the question of whether the original 

TKI should be continued is under investigation.  Although no benefit was observed with the 

addition of TKIs to chemotherapy in unselected non-small cell lung cancer populations [53,54], several 

observations suggest benefit in the treatment of patients with EGFR mutations and acquired TKI 

resistance. A retrospective series reported higher response rates in patients who continued the 

original TKI after initiating chemotherapy, though no difference in progression-free survival was 

observed[55]. Furthermore, accelerated disease progression or “disease flair,” defined by 

hospitalization or death attributable to disease progression, was observed in the short wash out 

period in some patients who stopped TKIs awaiting further chemotherapy[56]. These results suggest 

that some clones remain sensitive to EGFR blockade at the time of disease progression and that 

maintaining EGFR suppression is beneficial. Clinical trials are underway to prospectively assess the 

benefit of continuing TKI when chemotherapy is initiated (NCT01544179, NCT01928160 

clinicaltrials.gov). If the TKI is not continued during chemotherapy, re-responses to erlotinib can be 

seen after post-progression “drug holidays[57].”  

 

Future directions 
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The identification of common recurring mechanisms of resistance to TKIs provides the opportunity 

for rationally designed treatment of resistant disease. One strategy is the development of new TKIs 

with activity against secondary resistance mutations. Though there was initial optimism based on 

preclinical data that afatinib, an irreversible TKI, would overcome resistance to erlotinib or gefitinib 

including T790M, the response rate was only 7% in a phase IIb/III trial in patients with disease 

progression after initial disease control on erlotinib or gefitinib[58].  CO-1686, a third-generation 

EGFR TKI, has shown in vitro and in vivo activity against cells and tumors harboring T790M 

mutations and is currently being studied in a phase 1/2 clinical trial of EGFR TKI-resistant disease[59]. 

In addition, an alternate dosing regimen incorporating intermittent high-dose afatinib showed in 

vitro activity against T790M and is being studied in a phase Ib clinical trial (NCT01647711 

clinicaltrials.gov). Furthermore, combination therapy with afatinib and cetuximab showed promising 

activity in erlotinib resistant disease including cancers harboring the T790M mutation[60]. Other 

strategies to prevent or treat TKI-resistant disease include the addition of an inhibitor of one of the 

bypass pathways (MET, AKT, PI3K, IGFR) and HSP-90 inhibitors, which may decrease signaling 

through EGFR by decreasing the stability of the protein[61].  

 

The identification of driver mutations in lung adenocarcinoma and the subsequent development of 

drugs that inhibit their oncogenic activity has been a major therapeutic advance benefitting patients 

with advanced disease. An understanding of the reasons for drug failure enables the optimal use of 

currently available EGFR targeted TKIs and maximizes their clinical benefit. Current evidence to 

guide management of TKI-resistant disease is limited but suggests that new principles may apply in 

the era of targeted therapy. The field of targeted therapy of lung cancer is rapidly evolving and the 

full potential of this treatment strategy is yet to be realized.  
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Table 1: Drugs that may lower serum levels of targeted therapies. 

 

Erlotinib/Gefitinib Afatinib 

Rifampin, rifabutin, rifapentine, 

phenytoin, phenobarbital, 

carbamazepine, St. John’s wort, 

proton pump inhibitors, H2-blockers, 

antacids, tobacco 

Rifampin, phenytoin, carbamazepine, St. 

John’s wort, primidone, tipranavir 
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