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Abstract 1 

Small extracellular vesicles (sEVs, exosomes) are important components of the tumor 2 

microenvironment (TME). They are small membrane-bound vesicles derived from almost 3 

all cell types and play an important role in intercellular communication. Exosomes 4 

transmit biological molecules obtained from parent cells, such as proteins, lipids and 5 

nucleic acids, and are involved in cancer development. MicroRNAs (miRNAs), the most 6 

abundant contents in exosomes, are selectively packaged into exosomes to carry out their 7 

biological functions. Recent studies have revealed that exosome‑delivered miRNAs play 8 

crucial roles in the tumorigenesis, progression, and drug resistance of hepatocellular 9 

carcinoma (HCC). In addition, exosomes have great industrial prospects in the diagnosis, 10 

treatment, and prognosis of patients with HCC. 11 

This review summarized the composition and function of exosomal miRNAs of different 12 

cell origins in HCC and highlighted the association between exosomal miRNAs from 13 

stromal cells and immune cells in the TME and the progression of HCC. Finally, we 14 

described the potential applicability of exosomal miRNAs derived from mesenchymal 15 

stem cells in the treatment of HCC. 16 

 17 

Key words: Hepatocellular carcinoma; MicroRNA; Exosomes; Extracellular vesicles; 18 

Nonparenchymal cells 19 

 20 

Core tip: Hepatocellular carcinoma (HCC) is one of the most serious cancers in adults and 21 

microRNAs (miRNAs) in small extracellular vesicles (sEVs, exosomes) play a vital role in 22 

the pathophysiological processes of HCC. Recent studies on exosomal microRNAs 23 

(miRNAs) in HCC mainly focus on miRNA profiling but place little emphasis on where 24 

miRNAs come from and what target cells they act on. This review focuses on the origin of 25 

exosomal miRNAs according to their parent cells in the tumor microenvironment (TME) 26 

and their role in HCC pathogenesis, contributing to a better understanding of exosomal 27 

miRNAs in TME. 28 

 29 

INTRODUCTION 30 
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Liver cancer was the sixth most common malignant solid tumor and the third leading 31 

cause of cancer death worldwide in 2020[1]. Hepatocellular carcinoma (HCC) is the main 32 

histological subtype of liver cancer, accounting for 80% of primary liver cancer[2]. It is 33 

characterized by a high degree of malignancy and poor prognosis and is a serious threat 34 

to human health. Due to the strong concealment of incipient symptoms, it’s difficult to 35 

diagnose HCC early.  In addition, approximately 70% of patients undergo recurrence and 36 

metastasis within 5 years after surgical resection[3]. 37 

The tumor microenvironment (TME) plays a critical role in the tumorigenesis and 38 

progression of HCC[3]. The TME mainly consists of a variety of resident and infiltrating 39 

host cells, secreted factors and extracellular matrix proteins [4]. Nonparenchymal hepatic 40 

cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic 41 

macrophages, play an important role in establishing the TME and stimulating 42 

tumorigenesis by paracrine communication through cytokines and/or angiocrine factors[5]. 43 

Recent studies on the TME have provided novel insight into tumor growth and metastasis, 44 

in which exosomes play an important role[6-8]. 45 

Small extracellular vesicles (sEVs), also known as exosomes, refer to a subpopulation of 46 

extracellular vesicles with a 40-160-nm diameter derived from multivesicular bodies 47 

(MVBs), which act as substance transport carriers for biological information exchange to 48 

regulate the cellular microenvironment[9]. To maintain consistency in nomenclature across 49 

studies published at different stages, we use the name exosome for the rest of this review. 50 

Studies have shown that exosomes contain various cargoes including proteins, DNA, 51 

lipids, messenger RNAs (mRNAs), microRNAs (miRNAs), long noncoding RNAs 52 

(lncRNAs) and circular RNAs (circRNAs), which are involved in intercellular 53 

communication[10, 11]. An increasing number of molecules within exosomes have been 54 

identified. According to data from the ExoCarta database (http://www. exocarta. org), the 55 

contents inside exosomes that have been identified include 9769 proteins, 3408 mRNAs, 56 

2838 miRNAs and 1116 lipids. Initially, exosomes were considered as carriers of cellular 57 

waste, and their functions were also underestimated[12]. Research during the past decades 58 

has confirmed the important role of exosomes in mediating intercellular communication 59 

under physiological and pathological conditions[13]. In 1996, exosomes derived from 60 
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murine and human B lymphocytes were proven to play an essential role in delivering 61 

MHC molecules and induced antigen-specific MHC class II-restricted T-cell responses[14]. 62 

Later, cancer cells and stromal cells in the TME were also found to deliver exosomes and 63 

modulate tumor progression through exosome-mediated molecular exchanges[15, 16]. 64 

Exosomes have thus become important contributors to cancer initiation and progression[17-65 

19]. 66 

MicroRNAs (miRNAs) are a large family of posttranscriptional regulators of gene 67 

expression with a length of approximately 20-24 nucleotides and control developmental 68 

and cellular processes in eukaryotic organisms[20]. Due to their important role in gene 69 

expression, miRNAs in exosomes have also been widely studied. In 2007, Valadi et al. 70 

reported that exosomes contained miRNAs, which could be delivered to other cells and 71 

exert their functions[21]. Studies have shown that exosomes contain high levels of miRNAs, 72 

which contribute to immune regulation, chemoresistance, and metastasis in a variety of 73 

tumors[22]. These miRNAs can promote tumor development in a paracrine manner in the 74 

surrounding microenvironment[23-25]. The identification of abnormally expressed miRNAs 75 

in pathological states might further the understanding of the mechanisms of cancers. 76 

Accumulating studies have shown that exosomes are involved in the genesis and 77 

development of tumors by transmitting signals between cells and regulating the TME[26]. 78 

This paper summarizes the studies of exosomal miRNAs released from nonparenchymal 79 

cells in the TME of HCC and discusses the association between these exosomal miRNAs 80 

and HCC. This study will help researchers in the field in better understanding the role of 81 

exosomal miRNAs from stromal cells and immune cells in HCC and in developing 82 

innovative strategies for HCC prevention and treatment. 83 

 84 

1. Formation, composition and functions of exosomes 85 

Exosomes are a subtype of extracellular vesicles with a diameter of 40-160 nm[27]. Unlike 86 

other types of vesicles, exosomes have a different formation mechanism. First, the plasma 87 

membrane germinates inwards to form early endosomes (membrane-bound vacuoles)[28]. 88 

By further inwards budding of early endosomes encompassing several miRNAs, proteins 89 

and other selected substances, late endosomes called multivesicular bodies (MVBs) are 90 
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formed[29]. Subsequently, the MVBs fuse with the cell membrane and release intraluminal 91 

endosomal vesicles into the extracellular space, which then become exosomes[30] or fuse 92 

with the lysosome to degrade the biological information contained inside[31]. 93 

The endosomal sorting complex required for transport (ESCRT) mainly guides special 94 

molecules into the exosomes of MVBs and is regarded as an important mechanism of 95 

synthesis[32]. The ESCRT complex selects the “cargo” protein that is labeled by ubiquitin, 96 

directs it to MVBs, and then separates the MVB from the peripheral membrane in a highly 97 

conserved process that is homologous to the process of cytokinesis and virus budding[33]. 98 

Exosomes can be produced by any cell under normal or pathological conditions and might 99 

be taken up by other cells to carry out their function[34, 35]. Exosomes carry multiple 100 

biologically active substances, including proteins, RNA, DNA, and cholesterol[36-38]. The 101 

density at which exosomes float in a sucrose gradient is between 1.13 and 1.19 g/mL[39]. 102 

Of note, the composition of exosomes varies depending on their cellular origin[40], and 103 

different cell-derived exosomes or even the same cell-derived exosomes contain different 104 

components in different physiological or pathological states[41]. The amount of exosomal 105 

miRNAs secreted by hepatoma cells could also vary under different stimuli[42]. Research 106 

has shown that 55 miRNAs in Heb3B cell-derived exosomes were expressed at levels that 107 

were four times higher than those in donor cells, while 30 miRNAs were expressed at 108 

lower levels, and 11 miRNAs were expressed only in exosomes[43]. These changes may be 109 

a potential mechanism for disease progression. 110 

 111 

2. Exosomal miRNAs and liver cancer 112 

In recent years, exosomes have been shown to be important mediators of intercellular 113 

material and information exchange, that can modulate the TME by transmitting nucleic 114 

acids and proteins between cells, thus playing a role in tumor cell growth, metastasis, drug 115 

resistance, and immune regulation[44, 45]. As an essential component of exosomes, exosomal 116 

miRNAs exert crucial functions in HCC tumorigenesis and progression. 117 

Here we first review the role of exosomal miRNAs derived from liver cancer cells. 118 

Specifically, miR-122, the most abundant miRNA in the human liver is decreased in the 119 

liver of HCC patients[46-48]. It can be expressed and released by Huh7 cells and transferred 120 



7/47 

 

into miR-122-deficient HepG2 cells in the form of exosomes, reducing the growth and 121 

proliferation of recipient HepG2 cells. The restoration of miR-122 inhibits HCC growth 122 

and sensitizes HCC to chemotherapeutic drugs[49]. In addition, exosomes delivered by 123 

liver cancer cells can affect nonparenchymal cells in the microenvironment, promoting the 124 

progression and recurrence of tumors, which will be discussed in subsequent sections. 125 

On the other hand, exosomal miRNAs secreted by tumor cells outside the liver can also 126 

promote the formation of premetastatic niches in the liver. Colon cancer cell-derived 127 

exosomes can deliver miR-21, miR-192, and miR-221 to hepatoma cells[50]. Colon cancer 128 

cell-derived exosomal miR-25-3p induced premetastatic niche formation in the liver by 129 

improving vascular permeability and angiogenesis[51]. Exosomes from colorectal cancer 130 

highly expressed miR-135a-5p, which could be transmitted to hepatic Kupffer cells to 131 

regulate the LATS2-YAP1/TEAD1-MMP7 pathway and promote cell adhesion, forming 132 

premetastatic niches[52]. These results showed that exosomes could communicate between 133 

different kinds of cancers, even changing the microenvironment to boost liver 134 

metastasis[53]. 135 

Exosomal miRNAs might also be associated with different etiology of underlying liver 136 

disease in patients with HCC. The relationship between miRNAs and different liver 137 

diseases including, hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, alcohol-138 

associated liver disease (ALD), nonalcoholic steatohepatitis (NASH), nonalcoholic fatty 139 

liver disease (NAFLD), autoimmune hepatitis (AIH), and drug-induced liver injury (DILI) 140 

has been discussed extensively in previous high-quality reviews[54-56]. Hepatocyte-specific 141 

miR-122 is decreased in the livers of ALD, NASH, and HCC patients. This microRNA 142 

directly pairs with distinct regions at the 5′-UTR of the HCV RNA genome and promotes 143 

the replication of HCV RNA[57]. Diverging from its role in HCV infection, miR-122 144 

suppresses HBV replication by downregulating the cyclin G1-p53 complex and blocking 145 

the specific binding of p53 to HBV enhancers[58]. The liver expression of hepatocyte-146 

enriched miR-192 is elevated in simple steatosis but not in NASH [59], and is decreased in 147 

HCC[60]. It is the most significantly downregulated miRNA in hepatic cancer stem cells 148 

(CSCs) and contributes to CSC activation. Owing to the anti-tumorigenic effects of miR-149 

192, delivering miR-192 to HCC may be a potent strategy for HCC therapy[60]. The 150 
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expression of miR-155, highly expressed in immune cells, including macrophages, is 151 

increased in the livers of ALD, AIH, and HCC patients. It is an oncogenic miRNA that 152 

links inflammation with tumorigenesis[61, 62]. Activation of NF-κB signaling seems to 153 

upregulate miR-155 expression in hepatocytes and liver cancer associated with choline-154 

deficient and amino acid-defined die feeding in mice[61], or HCV infection in patients[62]. 155 

However, few studies have focused on the etiology of HCC and miRNAs delivered by 156 

exosomes in HCC. A recent study reported that neutrophils can transmit miR-223 via 157 

extracellular vesicles to macrophages, promoting liver fibrosis resolution[63]. 158 

Neutrophil/myeloid-specific miR-223 is a well-documented anti-inflammatory miRNA. It 159 

inhibits IL-6 expression and subsequently attenuates the IL-6-p47phox-ROS pathway in 160 

neutrophils[64]. The expression of miR-223 is elevated in serum and/or liver in patients or 161 

mouse models with ALD or NASH, of which hepatic neutrophil infiltration is a hallmark. 162 

Thus, elevation of miR-223 compensatively protects against ALD[64] and NASH[65], while 163 

downregulation of miR-223 in HCC likely acts as a causal factor to accelerate HCC 164 

progression[66]. Injection of miR-223 is an effective therapy in mouse models of acute 165 

hepatitis and NASH[67]. Future studies of the above-reported miRNAs associated with 166 

different etiology of liver diseases underlying HCC could be extended to the area of 167 

exosomes. 168 

 169 

3. The interactions between TME and tumor cells via exosomal miRNAs in HCC 170 

Since Stephen Paget proposed the “seed-soil” theory of tumor metastasis in 1889 to explain 171 

the organ specificity of tumor metastasis, there has been increasing evidence that tumor 172 

metastasis requires coordination between tumor cells and the TME, which has been 173 

recognized as an evolutionary and ecological process, including constant, dynamic and 174 

reciprocal interactions. Nonparenchymal cells in the liver cancer TME, such as hepatic 175 

stellate cells, fibroblasts (cancer-associated fibroblasts or CAFs), immune cells (T 176 

lymphocytes, B lymphocytes, NK cells, natural killer T cells, and tumor-associated 177 

macrophages or TAMs), and endothelial cells (ECs), play a pivotal role in tumor-stromal 178 

interactions, thus regulating the biological activity of HCC[68]. Noncellular components 179 

include growth factors such as transforming growth factor-β (TGF-β), insulin-like growth 180 
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factor (IGF), fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and vascular 181 

endothelial growth factor (VEGF), as well as proteolytic enzymes, ECMs, and 182 

inflammatory cytokines. These factors can provide a flexible environment for the further 183 

growth and proliferation of HCCs. As an essential component of the TME, exosomal 184 

miRNAs are involved in cell-to-cell signal transduction and the processes of tumor 185 

formation and progression. In the next section, the role of the exosomal miRNAs from 186 

different nonparenchymal cells in HCC formation and metastasis is thoroughly discussed, 187 

which may provide new insights for the clinical diagnosis and treatment of HCC (Figure 188 

1). 189 

 190 

3.1 Exosome-mediated cell-cell communication between activated hepatic stellate cells 191 

(HSCs) and HCC cells 192 

Hepatic stellate cells (HSCs) are situated in the space of Disse between hepatocytes and 193 

liver sinusoidal endothelial cells (LSECs), which store vitamin A in lipid droplets[69, 70]. 194 

When the liver is damaged, quiescent hepatic stellate cells (qHSCs) transform into 195 

activated hepatic stellate cells (aHSCs) to secrete proteins such as elastin that promote 196 

cross-linking, maturation and insolubility of the fibrotic ECM[70]. Liver fibrosis occurs as a 197 

result of chronic liver disease, and the migration of fibroblasts is thought to play an 198 

important role in fibrosis. Many cell types, such as HSCs[71-73], portal fibroblasts (PFs)[71, 72], 199 

mesenchymal stem cell-like cells[74], mesothelial cells[75] and bone marrow-derived cells[76], 200 

have been reported to contribute to the myofibroblast pool. Researchers have shown that 201 

82-96% of myofibroblasts in models of toxic, cholestatic and fatty liver disease are derived 202 

from activated HSCs[73]. 203 

Liver fibrosis is a substantial risk factor for the development and progression of liver 204 

cancer[70]. Activated HSC is a major factor mediating liver fibrosis and promotes liver 205 

cancer progression. Activated HSCs cocultured with HCC cells promoted tumor growth 206 

and invasiveness in nude mice[77]. In 2022, Zhang X et al. reported that reducing activated 207 

HSC-derived exosomal miR-148a-3p suppressed HCC tumorigenesis through the 208 

ITGA5/PI3K/Akt pathway[78]. Another group found that HSC-HCC cell coculture 209 

reduced intracellular miR-335-5p expression in both types of cells. HSC-exosomes loaded 210 
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with miR-335-5p decreased cancer growth and invasion in vitro and in vivo[79]. In summary, 211 

activated HSCs can promote the development of HCC via various miRNAs delivered by 212 

exosomes, and targeting activated HSC-exosome miRNAs could be a novel therapeutic 213 

strategy in HCC. 214 

At the same time, HCC cells also promote the activation of HSCs through exosomes. The 215 

HCC cell derived exosome-miRNA-21, which targets the PETN gene in HSCs, activates 216 

the PDK1/AKT pathway and converts HSCs to CAFs[80]. Activated CAFs further 217 

promoted cancer progression by secreting angiogenic cytokines, including VEGF, MMP2, 218 

MMP9, bFGF and TGF-β[80]. A high level of serum exosomal miRNA-21 was correlated 219 

with greater activation of CAFs and higher vessel density in HCC patients[80]. 220 

 221 

3.2 Exosome-mediated cell-cell communication between CAFs and HCC cells 222 

Cancer-associated fibroblasts (CAFs) are important in the tumor microenvironment[81]. 223 

However, the concepts of HSCs and CAFs in early literature sometimes needed to be 224 

clarified. Researchers used to believe that in the HCC microenvironment, HSCs frequently 225 

differentiate into CAFs, which have been extensively reported to influence HCC 226 

progression[81-84]. Recently, Zhu et al. identified five CAF subtypes in HCC tumors, namely, 227 

vascular CAFs (vCAFs), matrix CAFs (mCAFs), lipid processing-mCAFs (lpmCAFs, 228 

CD36+ CAFs), lipid-processing CAFs (lpCAFs) and antigen-presenting CAFs (apCAFs), 229 

from single-cell RNA sequencing data of mouse and human HCC tumors. In these cells, 230 

CD36+ CAFs are derived from hepatic stellate cells[85]. Another group also showed that 231 

Tcf21 was explicitly expressed in hepatic stellate cells in mouse and human livers. Tcf21-232 

positive HSCs, representing approximately 10% of all HSCs, can transdifferentiate into the 233 

majority of myofibroblasts in fibrotic liver and CAFs in HCC[86]. 234 

As key players in the multicellular matrix-dependent alterations leading to the 235 

pathogenesis of HCC, CAFs can accelerate HCC progression by exosomal-mediated 236 

communication. A recent study found that miR-320a level was significantly reduced in 237 

CAF-derived exosomes compared with corresponding paraneoplastic fibroblast (PAF)-238 

derived exosomes from HCC patients. In vitro and in vivo studies revealed that 239 

transferring miR-320a to tumor cells via exosomes could function as an antitumor miRNA 240 
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by targeting PBX3 and subsequently inhibiting the activation of the MAPK pathway[87]. 241 

Another study confirmed that miR-150-3p was significantly reduced in CAF-derived 242 

exosomes. The loss of antitumoral miR-150-3p in CAFs-derived exosomes greatly 243 

promotes HCC progression. Exosomal miR-150-3p is a potential prognostic biomarker, 244 

and transferring miR-150-3p-loaded exosomes to HCC cells could abrogate the migration 245 

and invasiveness of HCC and might become a novel therapeutic option[88]. 246 

Apart from those under-expressed antitumor miRNAs in CAF-derived exosomes, the 247 

expression of oncogenic miR-20a-5p was much higher in CAFs than in HCC cells. MiR-248 

20a-5p can be loaded to CAF-derived exosomes and transferred from CAFs to HCC cells 249 

and resulting in inhibited expression of the tumor suppressor LIM domain and actin 250 

binding 1 (LIMA1), which inhibits the Wnt/β-catenin signaling pathway in HCC[89]. Thus, 251 

differential expression of exosomal miRNAs in CAFs plays a vital role in the developing 252 

and progressing of HCC, so anti-CAF drugs targeting specific exosomal miRNAs may 253 

yield a potential therapeutic strategy. 254 

However, other exosomal noncoding RNAs other than miRNAs also participate in the 255 

CAF-tumor cell communication. Chemoresistance in HCC can be influenced by CAF-256 

exosomal circRNA. CircZFR is highly expressed in CAFs and CAF exosomes. CAF-derived 257 

exosomes delivered circZFR to HCC cells, which inhibited the STAT3/NF-κB pathway 258 

and thereby promoted tumor growth and enhanced cisplatin (DDP) drug resistance[90]. In 259 

addition, CAF-derived exosomes promoted migration, invasion, and glycolysis in HepG2 260 

cells by releasing lncRNA TUG1, which suppressed miR-524-5p/SIX1 axis[91]. 261 

 262 

3.3 Exosome-mediated cell-cell communication between adipocyte and HCC cell 263 

Adipose tissue has long been considered to be involved in tumor progression[92]. 264 

Adipocytes are an important component of the hepatic microenvironment in nonalcoholic 265 

fatty liver disease (NAFLD), a significant risk factor for HCC[44]. There is a strong 266 

correlation between the adipocyte-HCC cell interaction and the risk of HCC development 267 

and progression[93]. Adipocyte-derived exosomes can affect the gene expression of liver 268 

cancer cells. In 2014, Koeck et al. reported that exosomes from obese donors’ visceral 269 

adipose tissue caused dysregulation of genes involved in the TGF-β pathway in HepG2 270 
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cells[94]. Recently, Liu et al. found that miR-23a/b was significantly higher in serum 271 

exosomes and tumor tissues of high-body fat ratio (BFR) HCC patients than in low-BFR 272 

HCC patients. In tumor tissues, miR-23a/b was most likely to be derived from adipocytes 273 

and transported into cancer cells via exosomes, thus promoting the growth and migration 274 

of HCC cells[95]. Moreover, exosomal miR-23a/b confers chemoresistance by targeting the 275 

von Hippel-Lindau/hypoxia-inducible factor axis[95]. Exosomal circRNAs also played a 276 

role. Adipocyte exosomal circ-DB can suppress miR-34a expression in HCC cells and 277 

subsequently activate the deubiquitination-related USP7/Cyclin A2 signaling pathway 278 

and promote tumor growth of HCC[96]. These studies provided evidence that high BFR-279 

related exosomal miRNA could be a promising target for future treatment of HCC. 280 

On the other hand, exosomes derived from HCC cells can educate surrounding adipocytes 281 

to create a favorable microenvironment for tumor progression. HepG2 exosomes induced 282 

an inflammatory phenotype in adipocytes by activating several phosphorylated kinases 283 

(p-AKT, p-Erk1/2, p-GSKb, p-stat5a, and p-p38) and NF-kB signaling pathway[44]. Tumor 284 

exosome-treated adipocytes promoted tumor growth, enhanced angiogenesis, and 285 

recruited more macrophages in a mouse xenograft model[44]. The specific exosomal 286 

miRNAs that played a role in the process remain to be revealed. 287 

Besides, the exposure to adipocyte exosome also increased the expression of TIMP-1, 288 

TIMP-4, Smad-3, integrins anb-5 and anb-8, and matrix metalloproteinase-9 in HSCs, all of 289 

which are intimately involved in the development of fibrosis in liver disease and showed 290 

increased expression in human studies and experimental models[94]. 291 

 292 

3.4 Exosome-mediated cell-cell communication between vascular endothelial cells and 293 

HCC cells 294 

It is well known that angiogenic factors from tumor cells activate vascular endothelial cells, 295 

promote their proliferation and migration, and contribute to aberrant tumor 296 

angiogenesis[97]. HCC is a typical hyper-vascular tumor, so understanding the mechanisms 297 

of angiogenesis in HCC is very important[98]. In an early study, Shih et al. reported that the 298 

downregulation of miR-214 in HCC cells induced hepatoma-derived growth factor (HDGF) 299 

expression and secretion so as to stimulate vascular endothelial cells for angiogenesis and 300 
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promote tumor growth[99]. Therefore, miR-214 is a potent suppressor of angiogenesis. It 301 

was also evidenced that HCC cell-derived exosomes could induce lumen formation of 302 

human umbilical vein endothelial cells[98]. Recently, several HCC cell-derived exosomal 303 

miRNAs were found to play an important role in angiogenesis. Fang et al. reported that 304 

hepatoma cell-derived exosomal miR-103 could be delivered into endothelial cells, then 305 

impair endothelial junction integrity and increase vascular permeability and promote 306 

tumor metastasis by targeting multiple endothelial junction proteins, including VE-307 

cadherin and p120-catenin[100]. Exosomal miR-210 secreted by HCC cells can also be 308 

transferred to endothelial cells, thereby promoting tumor angiogenesis by targeting 309 

SMAD4 and STAT6[101]. Exosomal miRNAs (miR-638, miR-663a, miR-3648, and miR-4258) 310 

from HuH-7M can attenuate the integrity of endothelial junctions and increase 311 

permeability by inhibiting VE-cadherin and ZO-1 expression[102]. These findings revealed 312 

that HCC-exosomal miRNAs could be delivered to endothelial cells to promote HCC 313 

progression. 314 

At the same time, the exosomes released by endothelial cells might also affect tumor cells. 315 

A recent study showed that engineered human cerebral endothelial cell-derived exosomes 316 

carrying elevated miR-214 (hCEC-Exo-214) could enhance HCC cells’ sensitivity to 317 

anticancer drugs, such as oxaliplatin and sorafenib[103]. However, how endothelial cell-318 

derived exosomes and exosomal miRNAs act on HCC cells is poorly studied. It is worth 319 

paying attention to in the follow-up studies. 320 

 321 

3.5 Exosome-mediated cell-cell communication between immune cells and HCC cells 322 

The tumor immune microenvironment (TIME) is an important part of the TME[104]. It is 323 

influenced by intricate interactions between tumor cells and host immune cells[105]. In HCC, 324 

the poor overall survival outcome results from the collapse of immune surveillance, which 325 

is closely associated with the suppression of host immune responses[105-107]. Mounting 326 

evidence has indicated that the interplay of exosome exchange-based cancer immunity is 327 

involved in the modulation of the microenvironment, imparting immune-suppressive and 328 

immune-tolerogenic characteristics. 329 

TAM presents the major leukocyte component that infiltrates in the HCC TIME[107]. 330 
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Hepatic macrophages, also known as Kupffer cells, are the most abundant immune cells 331 

in the liver[108]. During the early stages of carcinogenesis, pro-inflammatory activation of 332 

Kupffer cells is important in tumor development. Once the primary tumor is established, 333 

the liver-infiltrated macrophages play a more prominent role than Kupffer cells in HCC 334 

progression[109]. M2-polarized TAMs promote HCC progression by preventing T cells from 335 

recognizing and killing cancer cells, promoting tumor growth, angiogenesis, invasion, and 336 

metastasis, and resisting immune damage[110, 111]. The role of TAM derived exosomes is 337 

now getting more and more attention. It has been reported that M2 macrophage-derived 338 

exosomal miR-92a-2-5p can increase the invasion of HCC cells by regulating the 339 

AR/PHLPP/p-AKT/β-catenin signaling pathway[112]. M2 macrophage-derived exosomal 340 

miR-27a-3p and miR-660-5p augmented HCC development by downregulating TXNIP 341 

and KLF3[113, 114]. TAM-derived exosomes with low levels of miR-125a and miR-125b have 342 

been proven to promote HCC cell proliferation, sphere cell formation, and metastasis by 343 

downregulating CD90, a stem cell marker of HCC. The miR-125a/b suppressed HCC cell 344 

proliferation and stem cell properties by targeting CD90, a stem cell marker of HCC stem 345 

cells[115]. 346 

Modulating TAM exosomal miRNAs provide a new way to suppress HCC. A tumor 347 

suppressor miRNA - miR-375 was found to be upregulated in exosomes from IL-2 348 

modulated TAMs and ameliorated HCC development[116]. Moreover, propofol can 349 

stimulate TAMs to secrete exosomes overexpressing miR-142-3p. MiR-142-3p exosomes 350 

were transferred to HCC cells, inhibiting HCC cell invasion[117]. 351 

Conversely, M1 macrophages perform proinflammatory and antitumor effects. M1 352 

macrophage-derived exosomal miR-628-5p inhibited the m6A modification of circFUT8, 353 

thereby inhibiting HCC development[118]. Peripheral blood monocyte-derived exosomal 354 

miR-142 and miR-223 can directly inhibit the proliferation of HCC[119]. 355 

The exosomes from other immune cells also play a role in HCC. In mice, NK-exosomes 356 

rich in miR-223 inhibited CCL4-induced liver fibrosis by inhibiting TGF-β1-induced HSC 357 

activation. ATG7 was confirmed as a direct target of miR-223, so the overexpression of 358 

ATG7 in HSCs abolished the HSC activation-suppressive effect of NK cell exosomes[120]. 359 

Mast cells can be stimulated by hepatitis C virus E2 envelope glycoprotein and secrete 360 
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large amounts of miR-490-rich exosomes, which can be transferred into HCC cells and 361 

inhibited tumor cell metastasis through the ERK1/2 pathway[121]. Besides, miR-150-5p and 362 

miR-142-3p can be transferred from regulatory T cells (Tregs) to dendritic cells DCs via 363 

exosomes, resulting in the induction of a tolerant phenotype in these cells, with increased 364 

IL-10 and decreased IL-6 production after LPS stimulation[122]. 365 

On the other hand, tumor-derived exosomal miRNAs also affect the distribution and 366 

function of immune cells. Tregs that produce inhibitory factors such as IL-10 and TGF-β 367 

are among the most prevalent suppressor cells in TME and have been related to tumor 368 

progression. Tregs also express a panel of chemokine receptors and surface molecules such 369 

as CTLA4 and PD-1, thus making them a direct target of immune checkpoint inhibitor 370 

immunotherapy. The development of immune-related adverse events may partly be 371 

attributed to Treg destabilization[123]. Tumor cell-secreted miR-214 could expand the 372 

CD4+CD25highFoxp3+ Treg population by decreasing the levels of PTEN in CD4+ T cells, 373 

leading to host immune suppression and rapid tumor growth[124]. The expansion of the 374 

Treg population by tumor-secreted miR-214 likely serves as a common mechanism for 375 

various cancer cells to create a tolerant immune environment. Inhibiting the transport of 376 

tumor-secreted miR-214 to immune cells may be a novel strategy to reverse tumor-induced 377 

immune tolerance[124]. 378 

In summary, exosome-delivered miRNAs from immune cells were intensely involved in 379 

the biological processes of HCC, and HCC-derived exosomal miRNAs also affect the 380 

distribution and function of immune cells. 381 

 382 

4. Clinical applications of exosome-delivered miRNAs in hepatocellular carcinoma 383 

Radical resection and trans-arterial chemoembolization (TACE) are still the most effective 384 

curative methods for patients with early-stage liver cancer. Still, the treatment efficacy 385 

remains unsatisfactory due to the compensatory effect of vascular proliferation after 386 

hypoxia[125, 126]. For patients with advanced liver cancer, targeted therapy, and traditional 387 

chemotherapy can only prolong the survival of these patients to a certain extent. 388 

Innovative and alternative therapies are continuously needed to improve the prognosis of 389 

HCC patients. 390 



16/47 

 

Studies have recently confirmed that specific miRNAs can be transported through 391 

exosomes, thereby controlling tumor growth and achieving therapeutic effects[127]. Since 392 

exosome has unique features as a drug delivery system, such as low immunogenicity, high 393 

biocompatibility, low toxicity, and the ability to cross the blood-brain barrier, exosome is 394 

gaining traction as a natural delivery vector for miRNA[128]. Among the cell types known 395 

to produce exosomes, mesenchymal stem cell (MSC) is an ideal candidate for the large-396 

scale production of exosomes for drug delivery. MSC-derived exosome has been used as 397 

a drug delivery vehicle in some studies for tumor treatment and regenerative medicine[129, 398 

130]. Based on the above findings, engineered MSC-derived exosomes loaded with specific 399 

miRNAs provide a new therapeutic strategy for HCC treatment. 400 

Exosomal miRNAs have been used to improve the chemosensitivity of tumor cells[131, 132]. 401 

The research showed that overexpression of miR-122 could regulate the sensitivity of HCC 402 

cells to chemotherapy drugs by downregulating multidrug resistance-associated genes, 403 

the anti-apoptotic gene Bcl-w and the cell cycle-related gene cyclin B1[47]. The miR-122-404 

modified amniotic membrane mesenchymal stem cells (AMSCs) can effectively package 405 

miR-122 into secreted exosomes, which mediate miR-122 communication between AMSCs 406 

and HCC cells and further increase the sensitivity of HCC cells to sorafenib[133]. AMSC 407 

exosomal miR-199a (AMSC-Exo-199a), constructed by miR-199a lentivirus infection and 408 

puromycin selection, acts as an effective carrier for miR-199a delivery to sensitize HCC 409 

cells to doxorubicin by targeting the mTOR pathway. In addition, intravenous injection of 410 

AMSC-Exo-199a can be delivered to tumor tissue, significantly increasing the effect of Dox 411 

on HCC in vivo[134]. 412 

Liver fibrosis is the precursor stage of cirrhosis and liver cancer. MSC-derived exosomes 413 

alleviated carbon tetrachloride (CCL4)-induced liver fibrosis in mice through the 414 

expression of miR-148a. MiR-148a directly targeted KLF6 to effectively convert the 415 

polarization state of macrophages from the M1 to the M2 phenotype in vitro, and liver 416 

fibrosis models[135]. In vitro studies have shown that transplanted human chorionic plate-417 

derived mesenchymal stem cells (CP-MSCs) reduce lung and liver fibrosis in murine 418 

models[136, 137]. One study supported that CP-MSCs released exosomes containing miRNA-419 

125b into target cells, such as hedgehog-responsive HSCs, and hindered hedgehog 420 
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signaling activation by inhibiting smoothened receptor expression, eventually alleviating 421 

hepatic fibrosis[138]. As a new candidate therapeutic strategy, MSC exosomes have excellent 422 

application prospects for HCC. 423 

In addition, MVs released from human liver stem cells (HLSCs) inhibited the growth of 424 

hepatoma cells both in vitro and in vivo by delivering antitumor miRNAs (miR451, 425 

miR223, miR24, miR31, miR214, and miR122) that downregulated MDR1, MIF, ras-426 

associated protein 14 (RAB14) and E2F-2[139]. 427 

 428 

CONCLUSION 429 

Despite significant advances in diagnosis and therapeutics, HCC remains a highly lethal 430 

disease. In most cases, HCC develops from chronic liver inflammation, which provides a 431 

tumor-promoting microenvironment composed of immune and stromal cells. As a novel 432 

cellular communicator in TME, exosomes mediate the intricate interaction of 433 

nonparenchymal cells (including immune and stromal cells) with cancer cells. They are 434 

involved in the etiology of HCC and multiple processes related to tumor initiation, 435 

development, metastasis, and drug resistance. Exosome cargoes, especially miRNAs, are 436 

key communication factors in the complicated cross-talk, indicating that they are 437 

promising prognostic markers and therapeutic targets for HCC. In this review, we focused 438 

on the role and mechanism of exosomal miRNAs from nonparenchymal cells for the 439 

development and progression of HCC. Also, we introduced the influences of exosomal 440 

miRNAs delivered by tumor cells on nonparenchymal cells. The functions of the exosomal 441 

miRNAs in HCC were also summarized (Table 1). Finally, the therapeutic potential of 442 

exosomes for HCC was discussed. With the development of nanoengineering technology, 443 

exosomes can be modified to carry specific miRNAs and target specific cells, thus enabling 444 

precision and individualized treatment of HCC. 445 

Although remarkable advances have been made in understanding the role of exosomes 446 

and their miRNA cargoes in HCC, some challenges remain. Different investigators 447 

reported different experimental observations for the same exosomal miRNAs. The 448 

inconsistency of experimental subjects and study designs might cause these discrepancies. 449 

Therefore, factors such as the environment, age and sex of the subjects, cause of HCC 450 
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occurrence, and data collection from multiple centers should be considered to produce 451 

more accurate results. Moreover, different isolation methods may result in different 452 

subpopulations of extracellular vesicles with different miRNAs, proteins, diameters, and 453 

functions[140-142]. In clinical applications, problems include low targeting efficiency and 454 

easy phagocytosis by the immune system. The exosome separation and purification 455 

method also have limitations and could be time-consuming and laborious. Therefore, more 456 

research must be done to solve these problems and develop more effective clinical 457 

applications of exosomes. With the combination of nanoengineering and molecular 458 

biology, exosome-mediated miRNAs for precision nanomedicine will provide new HCC 459 

diagnosis and treatment approaches. 460 
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Figure Legends 

 

Figure 1 A schematic of exosomal microRNAs in the tumor microenvironment of 

hepatocellular carcinoma. HCC, hepatocellular carcinoma; CAFs, cancer-associated 

fibroblasts; TAMs, tumor-associated macrophages; NK cells, Natural Killer cells; HSCs, 

hepatic stellate cells; MSC, mesenchymal stem cell. Red represents the promoting effect of 

miRNA on HCC proliferation, and green represents the inhibitory effect of miRNA on 

HCC proliferation. 

 

 

 

 

 

 



42/47 

 

Table 1 The function of exosomal microRNAs from interstitial cells in the liver 
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density gradient 

centrifugation and 

were incubated for 2 

h in plastic plates 

before the flask was 

washed intensively 

to remove any 

nonadherent cells. 

After 4 days of 

incubation in 

serum-free medium 

supplemented with 

1% autologous 

serum, adherent 

[143] 2014 
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oid 

721.22

1 and 

mouse 

lymph

oblast-

like 

masto

cytom

a P815 

cell 

lines 

cells were washed 

with PBS and 

cultured in standard 

DMEM-based 

medium for 3 to 6 

extra days to 

generate monocyte-

derived 

macrophages, 

phenotyped to be 

CD14+, CD11a+, 

CD3−, CD56−, and 

CD19−. 

miR-

490 

Huma

n MC 

line 

HMC-

1 

(treate

d with 

HCV-

E2) 

Total 

exosome 

separation 

reagent 

from 

Invitrogen 

The human 

HCC cell lines 

HepG2 and 

HepG3b 

High when HCV-

E2-stimulated 

MC-derived 

exosomes were 

incubated with 

the two types of 

HCC cells for 24 h 

compared with 

the incubation 

with normal MC-

derived exosomes 

ERK1

/2 

Inhibited 

HCC 

proliferati

on 

 [121] 2017 

miR-

223 

Huma

n NK 

cell 

line 

NK92-

MI 

Differenti

al 

centrifuga

tion 

The human HSC 

line LX-2 

Higher in 

Exosomes derived 

from NK cells 

than in parental 

NK-92MI cells 

AGT7 Attenuate

d TGF-β1-

induced 

HSC 

activation 

and 

inhibited 

liver 

fibrosis 

LX-2 cells were 

treated with TGF-β1 

(5 ng/mL) for 24 h 

to stimulate HSC 

activation. LX-2 

cells in the 

Exosomes derived 

from NK cells-

treated groups were 

pretreated with 

Exosomes derived 

from NK cells (10 

μg/mL) before 

TGF-β1 treatment. 

LX-2 cells in the 

rapamycin-treated 

groups were 

pretreated with the 

autophagy activator 

rapamycin (2 mM) 

in DMSO for 12 h 

[120] 2020 
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before TGF-β1 

treatment. 

miR-

125a/b 

TAMs ExoQuick 

exosome 

precipitati

on 

solution 

The human 

HCC cell lines 

Huh7, HepG2 

and BEL‐7404 

Downregulated in 

exosomes from 

HCC-associated 

macrophages 

CD90 Suppresse

d HCC 

cell 

growth 

and 

sphere 

formation 

TAMs and 

nontumor 

macrophages were 

isolated from 

primary human 

HCC, adjacent 

nontumor liver 

tissues from 6 

patients with HCC 

[115] 2019 

miR-

628-5p 

M1 

macro

phage 

 The human 

HCC cell lines 

Huh7, 

HCCLM3, 

Hep3B, and 

MHCC97H ，  

Immortalized 

human liver 

epithelial 

THLE-3 cell line 

High in M1-Exos METT

L14/ci

rcFUT

4/CH

MP14

B 

Inhibited 

HCC cell 

progressio

n 

THP-1 cells were 

differentiated into 

M0 macrophages by 

a 24h incubation 

with 150 nM 

phorbol 12-

myristate 13-acetate 

followed by a 24h 

incubation in RPMI 

medium. M0 

macrophages were 

polarized to M1 

macrophages by 

incubation with 

20 ng/ml IFN-γ and 

10 pg/ml 

lipopolysaccharide 

[118] 2022 

miR-

92a-2-

5p 

M2 

macro

phage

（ mo

nocyti

c 

leuke

mia 

cell 

line 

THP-

1） 

Centrifug

ed and 

filtered 

through a 

0.22-µm 

PVDF 

membran

e and 

ultracentri

fugation 

Human liver 

cancer SK-HEP-

1 and HepG2 

cell lines, 

HA22T cell line 

and mouse HCC 

Hepa 1-6 cell 

line 

Increased after 

coculture with 

liver cancer cells 

AR/P

HLPP

/p-

AKT/

β-

cateni

n 

signali

ng 

Promoted 

HCC 

growth 

and 

invasiven

ess 

To induce 

differentiation into 

macrophages, THP-

1 cells were cultured 

with 100   ng/ml 

PMA (Sigma) for 48

  h. and the 

macrophage was 

cultured with the 

addition of DMSO 

to promote M2 

polarization 

[112] 2020 

miR-

660-5p 

M2 

macro

phage

（ mo

nocyti

Differenti

al 

centrifuga

tion 

Human HCC 

cell lines HepG2 

and Bel-7402 

High KLF3 Augmente

d the 

tumorigen

ic ability 

of HCC 

THP-1 monocytes 

were stimulated by 

100 ng of phorbol 

12-myristate 13-

acetate (Sigma ‒

[114] 2021 
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c 

leuke

mia 

cell 

line 

THP-

1） 

cells Aldrich, MO, USA) 

for 48h, thus 

differentiating into 

M0 macrophages. 

Then, M0 

macrophages were 

treated with 20 

ng/mL interleukin 4 

(AF-200–04-5, 

PeproTech, NJ, 

USA) for 72 h to 

polarize into M2 

macrophages 

miR-

27a-3p 

M2 

macro

phage

（ mo

nocyti

c 

leuke

mia 

cell 

line 

THP-

1） 

SBI 

ExoQuick-

TC Kit 

Human HCC 

cell lines Huh7, 

97H, HepG2, 

LM3 and 

SMMC-7721 

—— TXNI

P 

Induced 

the cancer 

stemness 

of HCC 

Differentiation of 

THP-1 cells to 

macrophages was 

performed using 

200 ng/mL phorbol 

myristic acetate, and 

the cells were then 

cultured with 20 

ng/mL interleukin-

4 for 72h to induce 

M2-type 

polarization 

[113] 2021 

miR-

142-3p 

TAMs 

treate

d by 

propo

fol

（ The 

mouse 

macro

phage 

cell 

line 

Raw 

264.7 

cells） 

Differenti

al 

centrifuga

tion 

The mouse HCC 

cell line Hepa1-6 

Dose-dependent 

increase when 

treated with 

propofol 

RAC1 Enhanced 

the 

antitumor 

activity of 

propofol 

Raw 264.7 cells were 

cultured in 

complete RPMI 1640 

with 10% FBS and 

treated with 

propofol (dissolved 

in RPMI 1640) in 

complete medium. 

TAMs were isolated 

from tumor-bearing 

mice treated with 

0 mg/kg, 20 mg/kg 

and 50 mg/kg 

propofol by i.p. 

injection. 

[117] 2014 

miR-

375 

TAMs 

(IL-2 

induc

ed) 

Total 

Exosome 

Isolation 

Reagent 

The human 

HCC cell lines 

HepG2 and 

QJY–7703 cells 

High  Ameliorat

ed HCC 

developm

ent and 

progressio

Primary human 

HCC specimens 

were collected from 

patients who 

suffered from 

[116] 2022 
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n hepatectomy. The 

macrophages were 

isolated and 

cultured by Percoll 

(GE Healthcare) 

density gradient 

centrifugation. 

TAMs were treated 

with IL-2 for 24 h 

before the 

supernatants were 

collected. The 

treatment 

concentration was 

20 ng/ml. 

Notes: HCC: Hepatocellular carcinoma; CAFs: Cancer-associated fibroblasts; TAMs: 

Tumor-associated macrophages; NK cells: Natural Killer cells; HSCs: Hepatic stellate 

cells; MSC: Mesenchymal stem cells; ITGA5: Integrin α5; PI3K: Phosphoinositide 3‐

kinase; CDC42: Cell Division Cycle 42; CDK2: Cyclin dependent kinase 2; PBX3: Pre-B-cell 

leukemia homeobox 3; PAFs: Para-cancer fibroblasts ; LIMA1: LIM domain and actin 

binding 1; P-gp: P-glycoprotein; SF3B3: Splicing factor 3b subunit 3; hCECs: Human 

cerebral endothelial cells; BFR: Body fat ratio; VHL: Von Hippel-Lindau; HIF-1α: Hypoxia-

inducible factor 1α; STMN1: Stathmin-1; PBMCs: Peripheral blood mononuclear cells; MCs: 

Mast cells; HCV-E2: Hepatitis C virus E2 envelope glycoprotein; ERK1/2: Extracellular 

regulated protein kinases 1/2; AGT7: Autophagy-related 7; Exos: Exosomes; METTL14: 

Methyltransferase-like 14; AR: Androgen receptor; KLF3: Kruppel-like factor 3; TXNIP: 

thioredoxin-interacting protein; RAC1: Rac family small GTPase 1 
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