Table	S1:	The	search	strategy	to	identify	the	top	100	highest-cited	original	articles	from	WOSCC
databa	ise.													

Туре	Search Query	Results		
	TOPIC: (biologic therapy) OR TOPIC: (biological therapy) OR TOPIC: (biologic			
	treatment) OR TOPIC: (biological treatment) OR TOPIC: (biologic agent) OR			
	TOPIC: (biological agent) OR TOPIC: (biologic drugs) OR TOPIC: (biological			
C 1 . #1	drugs) OR TOPIC: (anti-tumor necrosis factor) OR TOPIC: (anti-TNF) OR TOPIC:			
Search #1	(infliximab) OR TOPIC: (IFX) OR TOPIC: (adalimumab) OR TOPIC: (ADA) OR	403,580		
	TOPIC: (certolizumab) OR TOPIC: (CZP) OR TOPIC: (anti-integrin) OR TOPIC:			
	(vedolizumab) OR TOPIC: (VEDO) OR TOPIC: (natalizumab) OR TOPIC: (NAT)			
	OR TOPIC: (anti-IL-12/23) OR TOPIC: (ustekinumab) OR TOPIC: (UST)			
Search #2	TOPIC: (Crohn disease) OR TOPIC: (Crohn's disease)	49,706		
Search #3	#1 AND #2 AND Document Types: (Articles)	5,489		
Note:				
Indexes= SCI-EXPANDED, CCR-EXPANDED.				
Timespan= From January, 1991 to December, 2020.				

WOSCC: Web of Science Core Collection.

Table S2: The top 100 highest-cited original articles in the biologic therapy of CD.

Rank	Article	TC
1	Hanauer SB, et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 2002;359:1541-1549.	2,978
2	Keane J, et al. Tuberculosis associated with infliximab, a tumor necrosis factor (alpha)-neutralizing agent. New Engl J Med. 2001;345:1098-1104.	2,649
3	Rutgeerts P, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. New Engl J Med. 2005;353:2462-2476.	2,461
4	Present DH, et al. Infliximab for the treatment of fistulas in patients with Crohn's disease. New Engl J Med. 1999;340:1398-1405.	1,931
5	Colombel JF, et al. Infliximab, Azathioprine, or Combination Therapy for Crohn's Disease. New Engl J Med. 2010;362:1383-1395.	1,923
6	Baert F, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. New Engl J Med. 2003;348:601-608.	1,517
7	Colombel JF, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn's disease: The CHARM trial. <i>Gastroenterology</i> . 2007:132:52-65.	1,460
8	Sands BE, et al. Infliximab maintenance therapy for fistulizing Crohn's disease. <i>New Engl J Med.</i> 2004;350:876-885.	1,436
9	Hanauer SB, et al. Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn's disease: the CLASSIC-I trial. <i>Gastroenterology</i> . 2006;130:323-332.	1,114
10	Sandborn WJ, et al. Vedolizumab as Induction and Maintenance Therapy for Crohn's Disease. New Engl J Med. 2013;369:711-721.	1,054
11	Dignass A, et al. The second European evidence-based Consensus on the diagnosis and management of Crohn's disease: Current management. J Crohns Colitis. 2010;4:28-62.	1,045
12	Vandullemen HM, et al. Treatment of Crohn's disease with antitumor necrosis factor chimeric monoclonal-antibody (CA2). <i>Gastroenterology</i> . 1995;109:129-135.	926
13	Rutgeerts P, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn's disease. <i>Gastroenterology</i> . 1999;117:761-769.	873
14	Hueber W, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. <i>Gut</i> . 2012;61:1693-1700.	872
15	D'Haens G, et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn's disease: an open	863

randomised trial. Lancet. 2008;371:660-667.

16	Gomollon F, et al. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn's Disease 2016: Part 1: Diagnosis and	825		
10	Medical Management. J Crohns Colitis. 2017;11:3-25.	633		
17	Sandborn WJ, et al. Certolizumab pegol for the treatment of Crohn's disease. New Engl J Med. 2007;357:228-1238.	791		
18	Schreiber S, et al. Maintenance therapy with certolizumab pegol for Crohn's disease. New Engl J Med. 2007;357:239-250.	762		
10	Van Assche G, et al. Brief report - Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. New Engl J Med.	750		
19	2005;353:362-368.			
20	Froslie KF, et al. Mucosal healing in inflammatory bowel disease: Results from a Norwegian population-based cohort. Gastroenterology.	750		
20	2007;133:412-422.	750		
01	Colombel JF, et al. The safety profile of infliximab in patients with Crohn's disease: The Mayo Clinic experience in 500 patients. Gastroenterology.	600		
21	2004;126:19-31.	090		
าา	Beaugerie L, et al. Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: a prospective observational	686		
	cohort study. Lancet. 2009;374:1617-1625.	000		
23	Rutgeerts P, et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn's disease. Gastroenterology. 2004;126:402-413.	685		
24	Sandborn WJ, et al. Adalimumab for maintenance treatment of Crohn's disease: results of the CLASSIC II trial. Gut. 2007;56:1232-1239.	681		
25	Sandborn WJ, et al. Adalimumab induction therapy for Crohn disease previously treated with infliximab - A randomized trial. Ann Intern Med.	668		
25	2007;146:829-838.	000		
26	Sandborn WJ, et al. Etanercept for active Crohn's disease: A randomized, double-blind, placebo-controlled trial. Gastroenterology.	662		
20	2001;121:1088-1094.	003		
27	Sandborn WJ, et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. New Engl J Med. 2012;367:1519-1528.	656		
28	Lichtenstein GR, et al. Serious infections and mortality in association with therapies for Crohn's disease: TREAT registry. Clin Gastroenterol Hepatol.	655		
20	2006;4:621-630.	000		
29	Sandborn WJ, et al. Natalizumab induction and maintenance therapy for Crohn's disease. New Engl J Med. 2005;353:1912-1925.	651		

30	Suhre K, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477:54-60.	632
31	Feagan BG, et al. Ustekinumab as Induction and Maintenance Therapy for Crohn's Disease. New Engl J Med. 2016;375:1946-1960.	623
32	Parameswaran N, et al. Tumor necrosis factor-a signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010.20:87-103.	618
33	Ghosh S, et al. Natalizumab for active Crohn's disease. New Engl J Med. 2003;348:24-32.	616
24	Van Den Brande JMH, et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease.	575
34	Gastroenterology. 2003;124:1774-1785.	575
35	Beaugerie L, et al. Predictors of Crohn's disease. <i>Gastroenterology</i> . 2006;130:650-656.	572
26	D'Haens G, et al. Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn's disease: A European	FCO
30	multicenter trial. Gastroenterology. 1999;116:1029-1034.	569
37	Baert F, et al. Mucosal healing predicts sustained clinical remission in patients with early-stage Crohn's disease. <i>Gastroenterology</i> . 2010;138:463-468.	563
20	Hyams J, et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn's disease in children. Gastroenterology.	554
30	2007;132:863-873.	554
20	Yousry TA, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. New Engl J Med.	550
39	2006;354:924-933.	550
40	Sandborn WJ, et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe	532
40	Crohn's disease. <i>Gastroenterology</i> . 2008;135:1130-1141.	552
11	Ruemmele FM, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. J Crohns Colitis.	517
41	2014;8:1179-1207.	517
42	Scallon B, et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002;301:418-426.	514
13	Garcia-Olmo D, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a Phase II clinical trial. Dis Colon Rectum.	108
45	2009;52:79-86.	490
44	Cosnes J, et al. Impact of the increasing use of immunosuppressants in Crohn's disease on the need for intestinal surgery. Gut. 2005;54:237-241.	490
45	Hanauer SB, et al. Incidence and importance of antibody responses to infliximab after maintenance or episodic treatment in Crohn's disease. Clin	489

Gastroenterol Hepatol. 2004;2:542-553.

16	Lugering A, et al. Infliximab induces apoptosis in monocytes from patients with chronic active Crohn's disease by using a caspase-dependent	196
40	pathway. <i>Gastroenterology</i> . 2001;121:1145-1157.	400
47	Ramos-Casals M, et al. Autoimmune diseases induced by TNF-targeted therapies - Analysis of 233 cases. Medicine. 2007;86:242-251.	480
19	Vande Casteele N, et al. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease. Gastroenterology.	470
40	2015;148:1320-9.e3.	472
49	Braat H, et al. A phase I trial with Transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol. 2006;4:754-759.	468
50	Ito H, et al. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology.	167
50	2004;126:989-996.	407
51	Brown SL, et al. Tumor necrosis factor antagonist therapy and lymphoma development - Twenty-six cases reported to the Food and Drug	161
51	Administration. Arthritis Rheum. 2002;46:3151-3158.	404
52	Zouboulis CC, et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J Eur Acad Dermatol Venereol.	463
52	2015;29:619-644.	405
53	Schnitzler F, et al. Mucosal healing predicts long-term outcome of maintenance therapy with infliximab in Crohn's disease. Inflamm Bowel Dis.	462
55	2009;15:1295-1301.	402
54	Shishodia S, et al. Getting back to the roots. Ann N Y Acad Sci. 2005;1056:206-217.	461
55	Maser EA, et al. Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn's disease. Clin	458
00	Gastroenterol Hepatol. 2006;4:1248-1254.	400
56	ten Hove T, et al. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn's disease. Gut. 2002;50:206-211.	439
57	Targan SR, et al. Natalizumab for the treatment of active Crohn's disease: Results of the ENCORE trial. Gastroenterology. 2007;132:1672-1683.	435
58	Peyrin-Biroulet L, et al. Efficacy and safety of tumor necrosis factor antagonists in Crohn's disease: Meta-analysis of placebo-controlled trials. Clin	131
50	Gastroenterol Hepatol. 2008;6:644-653.	101
59	Schreiber S, et al. A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn's disease. Gastroenterology.	425

2005;129:807-818.

60	Rutgeerts P, et al. Scheduled maintenance treatment with infliximab is superior to episodic treatment for the healing of mucosal ulceration	424		
00	associated with Crohn's disease. Gastrointest Endosc. 2006;63:433-442.	424		
61	Lichtenstein GR, et al. Serious infection and mortality in patients with Crohn's disease: More than 5 years of follow-up in the TREAT (TM) registry.	401		
62	Am J Gastroenterol. 2012;107:1409-1422.			
	Louis E, et al. Maintenance of remission among patients with Crohn's disease on antimetabolite therapy after infliximab therapy is stopped.	116		
02	Gastroenterology. 2012;142:63-70.e5.	416		
63	Jorgensen KK, et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab	/12		
05	(NOR-SWITCH): a 52-week, randomised, double-blind, non-inferiority trial. Lancet. 2017;10086:2304-2316.			
()	Vermeire S, et al. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn's	/13		
04	disease. Gut. 2007;56:1226-1231.	415		
65	Lichtenstein GR, et al. Infliximab maintenance treatment reduces hospitalizations, surgeries, and procedures in fistulizing Crohn's disease.	/10		
05	Gastroenterology. 2005;128:862-869.	410		
66	Regueiro M, et al. Infliximab prevents Crohn's disease recurrence after ileal resection. Gastroenterology. 2009;136:441-450.	408		
67	Vind I, et al. Increasing incidences of inflammatory bowel disease and decreasing surgery rates in copenhagen city and county, 2003-2005: A	402		
07	population-based study from the Danish crohn colitis database. Am J Gastroenterol. 2006;101:1274-1282.	402		
68	Farrell RJ, et al. Intravenous hydrocortisone premedication reduces antibodies to infliximab in Crohn's disease: A randomized controlled trial.	402		
00	Gastroenterology. 2003;124:917-924.	402		
60	Schnitzler F, et al. Long-term outcome of treatment with infliximab in 614 patients with Crohn's disease: results from a single-centre cohort. Gut.	308		
09	2009;58:492-500.	590		
70	Vernier-Massouille G, et al. Natural history of pediatric Crohn's disease: A population-based cohort study. Gastroenterology. 2008;135:1106-1113.	395		
71	Panes J, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3	380		
71	randomised, double-blind controlled trial. Lancet. 2016;388:1281-1290.	507		

72	Baert F, et al. Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn's ileocolitis.	201				
12	Gastroenterology. 1999;116:22-28.	501				
72	Karmiris K, et al. Influence of trough serum levels and immunogenicity on long-term outcome of adalimumab therapy in Crohn's disease.	276				
75	Gastroenterology. 2009;137:1628-1640.					
74	Rutgeerts P, et al. Adalimumab induces and maintains mucosal healing in patients with Crohn's disease: Data from the EXTEND trial.	371				
/4	<i>Gastroenterology</i> . 2012;142:1102-1111.e2.					
75	Sands BE, et al. Effects of vedolizumab induction therapy for patients with Crohn's disease in whom tumor necrosis factor antagonist treatment	368				
75	failed. Gastroenterology. 2014;147:618-627.e3.					
76	Gutierrez O, et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem.	350				
70	2002;277:41701-41705.	559				
77	Ciccocioppo R, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut.	358				
//	2011;60:788-798.	556				
78	Schoepfer AM, et al. Fecal calprotectin correlates more closely with the simple endoscopic score for Crohn's disease (SES-CD) than CRP, blood	358				
70	leukocytes, and the CDAI. Am J Gastroenterol. 2010;105:162-169.	556				
70	Van Assche G, et al. Withdrawal of immunosuppression in Crohn's disease treated with scheduled infliximab maintenance: a randomized trial.	358				
19	Gastroenterology. 2008;134:1861-1868.	556				
80	Siegel CA, et al. Risk of lymphoma associated with combination anti-tumor necrosis factor and immunomodulator therapy for the treatment of	256				
80	Crohn's disease. Clin Gastroenterol Hepatol. 2009;7:874-881.	350				
01	Esteve M, et al. Chronic hepatitis B reactivation following infliximab therapy in Crohn's disease patients: need for primary prophylaxis. Gut.	255				
01	2004;53:1363-1365.	355				
01	Cheifetz A, et al. The incidence and management of infusion reactions to infliximab: A large center experience. Am J Gastroenterol.	254				
82	2003;98:1315-1324.	334				
83	Brooklyn TN, et al. Infliximab for the treatment of pyoderma gangrenosum: a randomised, double blind, placebo controlled trial. Gut.	351				

2006;55:505-509.

84	Cleynen I, et al. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156-167.	348				
OE	Lee JH, et al. Life-threatening histoplasmosis complicating immunotherapy with tumor necrosis factor alpha antagonists infliximab and etanercept.	246				
85	Arthritis Rheum. 2002;46:2565-2570.	346				
86	Mittermaier C, et al. Impact of depressive mood on relapse in patients with inflammatory bowel disease: A prospective 18-month follow-up study.	2.42				
	Psychosom Med. 2004;66:79-84.	343				
87	Colombel JF, et al. The safety of vedolizumab for ulcerative colitis and Crohn's disease. Gut. 2017;66:839-851.	336				
00	Nesbitt A, et al. Mechanism of action of certolizumab pegol (CDP870): In vitro comparison with other anti-tumor necrosis factor at agents. Inflamm	224				
00	Bowel Dis. 2007;13:1323-1332.	334				
22	Sipponen T, et al. Crohn's disease activity assessed by fecal calprotectin and lactoferrin: Correlation with Crohn's disease activity index and	221				
89	endoscopic findings. Inflamm Bowel Dis. 2008;14:40-46.	331				
90	Hart AL, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. <i>Gastroenterology</i> . 2005;129:50-65.	331				
01	Lewis JD, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe.					
91	2015;18:489-500.	525				
92	Neurath MF, et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol. 1997;27:1743-1750.	325				
03	Burmester GR, et al. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis,	320				
95	ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn's disease. Ann Rheum Dis. 2013;72:517-524.	520				
04	Katz JA, et al. Outcome of pregnancy in women receiving infliximab for the treatment of Crohn's disease and rheumatoid arthritis. Am J	310				
74	Gastroenterol. 2004;99:2385-2392.	519				
05	Peyrin-Biroulet L, et al. Increased risk for nonmelanoma skin cancers in patients who receive thiopurines for inflammatory bowel disease.	314				
90	Gastroenterology. 2011;141:1621-1628	514				
96	Rutgeerts P, et al. Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology. 2004;126:1593-1610.	313				
97	Colombel JF, et al. Effect of tight control management on Crohn's disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet.	311				

2017;390:2779-2789.

100	expression. Am J Physiol Gastrointest Liver Physiol. 2005;288:422-430.	507
	Ma TY, et al. Mechanism of TNF-alpha modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein	307
99	2002;168:5342-5351.	510
	Waetzig GH, et al. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol.	310
98	2012;91:635-646.	510
	Ordas I, et al. Anti-TNF monoclonal antibodies in inflammatory bowel disease: Pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther.	310

CD: Crohn disease; TC: Total citation.