Name	Photos	Pecen -tage (%)	Component	Experiments	Expected effects
Citrus unshiu peel	*	12	Hesperidin	Activation of CREB/ BDNF pathway in the hippocampus (59,66–73)	Influence on sensory reweighting
Pinellia tuber		12	Alkaloids	Influence on gastroesophageal vagal nodose C-fibers (58–60)	Relieve nausea/vomiting and gastrointestinal discomfort
Atractylodes rhizome	1	12	Atractylenolide III	Influence on gastroesophageal vagal nodose C-fibers (58–60) Anti-diuretic effects (14,18,61,62) Anti-depression effects (59,65)	Relieve nausea/vomiting and gastrointestinal discomfort Improve hydrops in inner ear Improve mood disorders Influence on sensory reweighting
Atractylodes lancea rhizome		12		Activation of CREB/ BDNF pathway in the hippocampus (59,66–73)	
Poria sclerotium	3	12	Triterpenes, Polysaccharides	Anti-diuretic effects (14,18,61,62)	Improve hydrops in inner ear
Gastrodia tuber		8	Vanillin	Anti-depression effects (59,65) Protection of hippocampal CA1 neurons against ischemic cell death, production of an increase in neuronal survival and antioxidant activity against lipid peroxidation(64)	Improve mood disorders Influence on sensory reweighting
Malt		8	Amylase	Catalysation the hydrolysis of starch	Improve gastrointestinal discomfor
Astragalus root		6	Astragaloside IV	Anti-diuretic effects (14,18,61,62)	Improve hydrops in inner ear
Alisma tuber	93	6	Triterpenoids	Anti-diuretic effects (14,18,61,62)	Improve hydrops in inner ear
Ginseng	3	6	Ginsenosides	Anti-depression effects (59,65) Activation of CREB/ BDNF pathway in the hippocampus (59,66–73)	Improve hydrops in inner ear Influence on sensory reweighting
Phellodendron bark		4	Berberine	Cyclooxygenase-2 in anti-inflammatory activity (63)	Improve hydrops in inner ear
Ginger	374	2	6-shogaol	Influence on gastroesophageal vagal nodose C-fibers (58-60)	Relieve nausea/vomiting and gastrointestinal discomfort

Supplementary Figure 1 Components and effects of hangebyakujutsutemmato. Hangebyakujutsutemmato is composed of 12 crude herbal extracts, each of which affects the human body. HBT, Hangebyakujutsutemmato.

Supplementary Table 1 Overview of the assessment tools used in this study and their respective scoring systems

	Aim	Test	Scoring and criteria	
Questi	Degree of	DHI ^[24]	100-point scale, 25 items	
onnair	vertigo/dizzi		Sub-grouped into three domains:	
Officiali	ness		Physical (P), Emotional (E), Functional	
es			(F)	
	Anxiety and	HADS ^[26]	Anxiety (A) 21-point scale, Seven	
	depression		questions; Depression (D) 21-point scale,	
Tests			Seven questions	
	OD	OD questionnaire ^[28,29]	11-point scale, 11 questions	
	Motion	Graybiel's motion sickness	56-point scale, six questions	
	sickness	scores ^[30]		
	Sleep quality	PSQI ^[31,32]	21-point scale, 18 questions	
	Static	Foam Stabilometry	VCF	
	postural	The values of six	ACF	
	stability	parameters; the velocity of	VRF	
		movement of the center of	ARF	
		pressure (COP) (VCF) and	VFCF	
		envelopment area tracing	AFCF	
		by the movement of the	Large VCF and ACF, and small VRF,	
		COP in the eyes	ARF, VFCF, and AFCF indicated poor	
		closed/foam rubber (ACF)	static balance	
		condition to assess		
		vestibular weighting,		
		Romberg's ratios of velocity		
		and area with foam rubber		
		(velocity; VRF, area; ARF)		

to assess visual weighting, and the foam ratios (ratios of a measured parameter with to without the foam rubber) of velocity and area in the eyes closed condition (velocity; VFCF and area; AFCF) assess somatosensory

weighting^[41].

Dynamic Foulage test^[34-36,42] postural Stepping test: regulated 120 stability bpm tempo, upright

(Foulage test; standing with both arms set stepping test) at the sides of the body, feet

> closed, toes touching the plate continuously so that the individual can change only the height of their

> > rise

up

to

alternatively.

heels

cVEMP^[37] Otolith function AR was defined as the (Saccule) difference between the large

> amplitude (AL) and small amplitude (AS) of peak 13 to peak n23 divided by the sum of both amplitudes presented as a percentage,

FT value (area of the front-back width of the locus) with eyes open

closed^[34,35,42].

Small AR indicated good saccule-inferior vestibular nerve

function

i.e., $[(AL-AS)/(AL + AS)] \times$ 100 (%). The normal range of AR was defined as less than 33%. Otolith oVEMP^[44] Small AR indicated good function AR was defined as the utricle-superior vestibular nerve (Utricle) difference between the large function amplitude (AL) and small amplitude (AS) of peak p11 to peak n15 divided by the sum of both amplitudes presented as a percentage, i.e., $[(AL-AS)/(AL + AS)] \times$ 100 (%). The normal range of AR was defined as less than 33%. Semicircular Caloric test^[46] Small CP% (<20%) indicated normal canal and Canal paresis % (CP%) was utricle-superior vestibular nerve otolith calculated using function the function following equation: (Utricle) [(MVS of the right warm (RW)+ MVS of the right warm (RW))-(MVS of the left warm (LW)+ MVS of the left. cold (LC)]/(RW+RC+LW+LC) x 100(%). The normal range of the CP% was defined as less than 20%.

OD HUT test^[40,80]

HUT The test was performed according to the method established by the Japan Society of Neurovegetative Research $2015^{[29]}$. Non-invasive oscillatory measurements of blood pressure (BP) and the pulse rate were performed four times using an automated sphygmomanometer

(ES-H55P; Terumo, Tokyo, Japan) at the following timepoints: (1) After 10 min in the supine position; (2) After 1 min of standing; and After 10 min standing^[29]. The cuff of the BP-recording device was attached to the left arm, which was supported at heart level throughout the study. Testing was conducted during the daytime in a quiet environment at a constant room temperature of Results of the test were considered positive when meeting either of the following criteria: (1) BP drop \geq 20/10 mmHg 1 min, or 10 min after standing; HR \geq 120/min or an increase of 30 beats/min over that in the supine position 1 min or 10 min after standing; and (2) For systolic BP, diastolic BP, heart rate, CVRR, HF, and LF/HF, the change ratios were calculated as a measured parameter of (2)/(1) for the immediate change ratio, and (3)/(2) for the delayed change ratio.

22-25 °C to exclude the effects of chronobiologic factors on the outcomes of the test. The participants maintained a regular meal schedule but were restricted from smoking and caffeine ingestion for 6 hours before the examination. The intake of foods and medications with sympathomimetic activity was also prohibited before the study. results were determined as positive negative or according to the outcome of the HUT test and the international scientific definition of OD

VOR

Nystagmus: Nystagmus was evaluated using an infrared CCD camera. When pathologic nystagmus (i.e., spontaneous nystagmus or positional nystagmus) was observed, the test result was considered positive

Nystagmus Positive if any nystagmus was observed

DHI: Dizziness handicap inventory; HADS: Hospital Anxiety and Depression Scale; OD: Orthostatic dysregulation; PSQI: Pittsburgh Sleep Quality Index; FT value: Foulage test value; AR: Asymmetry ratio; cVEMP: Cervical vestibular-evoked myogenic potential; oVEMP: ocular VEMP; CP%: Canal paresis %; MVS: Maximum slow-phase velocity speed; HUT: Head-up tilt; VOR: Vestibulo-ocular reflex; HR: Heart rate; BP: Blood pressure.