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Methodological Background 

 

Curvelet Transform 

Curvelet space is the core of Hybrid Adaptive Filtering (HAF) section of the 

proposed scheme that aims to spotlight the structural and textural characteristics 

of Crohn’s Disease (CD) lesions and facilitate feature extraction. Among the most 

popular methods for characterizing the textural appearance of surfaces are 

wavelets and curvelets that offer multi-resolution analysis. The rationale for 

engaging multi-resolution analysis in Wireless Capsule Endoscopy (WCE) 

images is that CD lesions are characterized by great variations in appearance in 

terms of scale, shape, size, illumination and orientation. Additionally, the images 

contain a significant amount of background variation. Consequently, a robust 

tool is needed that is able to capture structural/textural data in various scales 

and directions. 

Wavelets have been commonly used for multi-resolution two-dimensional 

(2D) signal analysis. The power of wavelet transform (WT) rests on its ability to 

successfully capture point singularities, for piecewise smooth functions in one 

dimension (1D). Unfortunately, this is not the case in two dimensions. In essence, 

2D piecewise smooth signals, such as images, exhibit 1D singularities (edges) 

that cannot be efficiently described by wavelets. That is, edges separate smooth 

regions and while they are discontinuous across, they are typically smooth 

curves. In the 2D case, wavelets are produced by a tensor product of 1D wavelets 

and, thus, are good at describing discontinuities at edge points, but cannot 

capture the smoothness along edges. In other words, WT isolates directional data 

that only capture horizontal, vertical and diagonal structures in an image. Such a 

directional selectivity is not sufficient to describe medical images.  

In an attempt to overcome this traditional weakness of WT, Candes et al. 

introduced curvelet transform (CT)[1]. Its key concept is to represent a curve as a 
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superposition of functions of various lengths and widths obeying a specific 

scaling law[2]. Continuous CT is defined by a radial window      and an 

angular window      that are both smooth, nonnegative and real-valued. 

Considering    as the Fourier transform of a function      , we can assume       

as a “mother” curvelet in the sense that all curvelets at scale 2-j, orientation    and 

position         are obtained by rotations, scaling and translations of   . A 

curvelet coefficient is then defined as the inner product between an element f ϵ L2 

(R2) and a curvelet                 
     

     
   at scale 2-j, orientation   , and 

position            

                   , where    is the rotation matrix by   

radians. The needle shaped elements of CT exhibit high directional sensitivity; 

hence, depicting more efficiently singularities along curves than traditional WT 

and providing better texture discrimination ability than wavelet counterparts[2]. 

The continuous CT can be extended to the digital space via either unequispaced 

Fast Fourier Transform (FFT) or wrapping. Both techniques have the same 

complexity, however, the wrapping algorithm is somewhat simpler and, thus, 

more popular[2]. 

 

Differential Lacunarity (DLac) Analysis 

DLac is a robust tool for multi-scale and translation invariant texture analysis, 

capable to reveal slight or sharp changes in neighboring pixels without 

directional limitation, necessary in the case of WCE data. DLac has been used in 

various pattern discrimination problems in various scientific fields[3-5]. 

 

Lacunarity 

Lacunarity (Lac), derived from the word lacuna meaning “gap”, was introduced 

by Mandelbrot[6] as a means to discriminate textures and natural surfaces that 

share the same fractal dimension, but significantly vary in visual appearance. 

Fractal dimension does not fully describe the space-filling characteristics of data, 
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since it measures how much space is filled. To this end, Lac is a counterpart to 

fractal dimension that describes the texture of a fractal by measuring how data 

fill space. So, Lac has been used as a more general technique to characterize 

patterns of spatial dispersion[7]. More specifically, Lac analysis evaluates the 

largeness and distribution of gaps or holes in data sets at multiple scales. The 

more gaps distributed across a broad range of sizes a set contains, the higher Lac 

value it exhibits. Beyond being an intuitive measure of “gappiness”, Lac analysis 

can quantify additional features of patterns, such as translational and rotational 

invariance and, more generally, heterogeneity. Gefen et al.[8] defined Lac as the 

deviation of a fractal from translational invariance. Sets with non-uniform 

distribution of gaps can be considered heterogeneous and exhibit higher Lac 

than almost transnationally invariant (homogeneous) sets. But, translational 

invariance is highly scale-dependent. Sets that are homogeneous at small scales 

can be quite heterogeneous when examined at larger scales and vice versa. Lac, 

can deal with this situation due to its inherent characteristics. From this 

perspective, Lac analysis can be considered as a scale-dependent measure of 

texture of an object[6,7]. A number of methods have been presented to calculate 

Lac, but the most popular algorithms are founded on the intuitively clear and 

simple Gliding Box Algorithm (GBA)[9]. GBA is functional on 1-D binary data; 

Plotnick et al.[7], however, extended the concept of Lac to real datasets by 

applying thresholding. 

 

Differential Lacunarity 

In order to process grayscale images with Lac, the most straightforward 

approach is to extend the original GBA algorithm to 2D and convert the 

grayscale images to binary through thresholding. Nonetheless, in many scientific 

fields, and especially in medical imaging, such a thresholding procedure discards 

valuable information and cannot always be performed. To address this 
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shortcoming, Dong[10] proposed a new version of Lac, i.e., DLac, appropriate for 

grayscale image analysis. The calculation of DLac is based on a “Differential Box 

Counting” method that utilizes a gliding box   (     pixels) and a gliding 

window   (     pixels, with    ).   scans the image, while   scans  . Both 

  and   move in an overlapping pattern, sliding one pixel at a time.   is used 

for the calculation of the “box mass”   of the window at every position. If 

       is the probability function of   distribution across the image, the DLac of 

the image at scale  ,   is defined as[10] 

 

          ∑               ∑              .                    (1) 

 

It is common practice to calculate DLac for a variety of scales, forming a DLac–w 

curve. This curve is the multi-scale description of texture and characterises the 

specific space-filling pattern. 
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Nomenclature 

Abbreviation  Definition 

   ̅̅ ̅̅ ̅̅  … Average accuracy 

AR … Autoregressive model 

CaEn … CapsuleEndoscopy.org database 

CD … Crohn’s Disease 

CT … Curvelet transform 

CurvLac … Methodology based on CT and Lac[6] 

CurvLBP … Methodology based on CT and LBP[8] 

DLac … Differential lacunarity 

ECT … Methodology based on edge, color and texture features[17] 

EFF … Energy-based fitness function 

FICE … Fuji Intelligent Chromo Endoscopy 

FF … Fitness function 

FFT … Fast Fourier transform 

FV … Feature vector 

GA … Genetic algorithm 

GBA … Gliding box algorithm 

GI … Gastrointestinal 

Grad … Gradient-based features 

GT … Gastrointestinal tract 

HAF … Hybrid adaptive filtering 

Hist … Histogram-based features 

HSV … Hue-Saturation-Value 

IP … Initial population 

Lac … Lacunarity 
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LBP … Local binary patterns 

LFF … Lacunarity curve gradient fitness function 

NR … No reconstruction 

    ̅̅ ̅̅ ̅̅ ̅̅  … Average precision 

R … Reconstruction 

RGB … Red-Green-Blue 

riuLBP … Rotation invariant uniform local binary patterns 

RLM … Run-length-matrix 

ROI … Region of interest 

SB … Small bowel 

    ̅̅ ̅̅ ̅̅ ̅ … Average sensitivity 

SIFT … Scale invariant feature transform 

    ̅̅ ̅̅ ̅̅ ̅ … Average specificity 

SVM … Support vector machines 

WCE … Wireless capsule endoscopy 

WT … Wavelet transform 

 


