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ADDITIONAL PATHOGENETIC MECHANISMS PROPOSED FOR THE

DEVELOPMENT OF NAFLD-RELATED HCC

A critical but relatively new-identified link between cellular senescence and non-

alcoholic fatty liver disease (NAFLD) also play a role in NAFLD-related

hepatocellular carcinoma (HCC)[1]. Senescence was thought to act protectively

against the development of HCC. Obesity and NAFLD associated-activation of

hepatic stellate cells and their differentiation into myofibroblasts could lead to

excessive liver damage, stimulation of oncogenic pathways and expansion of the

malignant clones of liver cells[2]. Senescence of those cells mitigates their harmful

effects and acts as a tumor suppressor mechanism[3]. Intriguingly, senescence is a

double-edge sword since it is strongly associated with DNA damage, activation of

oncogenes and aggravation of hepatic fibrosis due to recruitment of fibroblasts by

senescent cells[3]. Importantly, a complex of cytokines, metalloproteases, chemokines,

growth factors and matrix remodeling factors constitutes the senescence associated

secretory phenotype (SASP) which further provokes the inflammation, induces

senescence to neighboring cells and facilitates tumorigenesis[4,5].

Moreover, the chronic hyper-caloric-mediated overproduction of reactive

oxygen species (ROS) along with increased endoplasmic reticulum stress leads to

hepatocyte cell death. Upon hepatocytes apoptosis, the compensatory inflammation

attracts adaptive and innate immune cells which facilitate the downregulation of

hepatic genes involved in β-oxidation and lipolysis[6]. Those processes along with

chronic hepatocyte damage led to aggravated cell death, DNA damage, further

activation of innate immunity with subsequent activation of hepatic stellate cells

(HSCs), that favor fibrosis development and pre-malignant lesions[7,8]. When

antitumor immune surveillance is not adequate, those pro-carcinogenic lesions can

ultimately lead to HCC arising.

In addition the altered composition of gut microbiota and their increased

translocation contribute to the hepatic inflammatory response and may facilitate

HCC onset[9]. Findings from both animal and human studies demonstrated that



gram-negative bacteria producing lipopolysaccharide are accumulated inside the

intestines of obese humans and rodents[10]. The enriched bacterial community

prevalence in gut microflora triggers the release of pathogen-associated molecular

patterns which are recognized by Toll-like receptors leading to initiation of

inflammatory cascade inducing the production of Tumor Necrosis Factor-a,

interleukin-1 and interleukin-6[11]. Consistent to that, Yoshimoto et al[12]

demonstrated that high-fat diet led to enriched presence of gram-positive bacteria in

gut microbiota and increased the serum levels of deoxycholic acid in a DMBA-

induced HCC murine model while depletion of those bacteria by pharmacological

agents, namely vancomycin or ursodeoxycholic acid robustly suppressed HCC

development[12].

Most of the current studies have highlighted the critical role of several

microRNAs (miRNAs), namely miR-122, miR-34a, miR19a, miR-21, miR-29, miR-23

in NASH-related HCC[13]. A genome wide analysis assessing differentially expressed

miRNAs among NASH patients, revealed downregulation of liver miR-122

expression leading to impaired lipid metabolism in NASH patients[14]. Along this

line, reduced expression of hepatic miR-122 was also observed in a NASH-related

HCC mouse model, demonstrating the role of this molecule in the pathogenesis of

NASH-related HCC[15]. Moreover, miR-34a interplays transcriptionally with the

tumor suppressor p53 gene, a key gene in the development of HCC, driving the

inhibition of glycolysis, exacerbation of hepatic fat accumulation and promotion of

oxidative phosphorylation[16]. MiR19a and miR21 and others are involved in the

PI3K/AKT/mTOR and PI3/AKT axes, the dysregulation of them mediates a wide

spectrum of cellular processes essential for tumorigenesis including proliferation,

cell survival and angiogenesis[17]. Steatosis and hepatocarcinogenesis were observed

in a PTEN deficient mouse model while downregulation of PTEN along with c-Met

upregulation drives to development of poorly differentiated HCC in a Rictor

conditional knockout animal model[18,19]. Furthermore, PTEN also act as a negative

regulator of insulin signaling via antagonism of the aforementioned PI3K-AKT

pathway[20]. Loss of PTEN function or PTEN depletion is associated with hepatic

steatosis, steatohepatitis and liver cancer[21]. In accordance with that, mutations in



PTEN have also been found in HCC patients[22]. Reduced expression or even absence

of PTEN has been identified in almost 50% of HCC and is associated with poor

prognosis[23]. In addition, upregulation of miR-216a and miR-217 mediates the

activation of oncogenic pathways of PI3K/AKT and transforming growth factor beta

by targeting PTEN and SMAD7 respectively leading to HCC recurrence in a rat

model[24]. Besides miRNAs, the long noncoding RNAs (lncRNAs) are also implicated

in the development of NAFLD and its progression to HCC and beyond that, they

interplay with the liver KCs. Wang et al[25] demonstrated that small nucleolar RNA

host gene 20 (SNHG20) expression was decreased in NAFLD hepatic tissue, but it

was significantly upregulated in the NAFLD-related HCC tissue and in liver-derived

KCs[25]. Since SNHG20 acts as a regulator of M1/M2 polarization in KCs[25], silence of

SNHG20 in a mouse cell-line of macrophages (RAW264.7) led the shift of KCs

towards M1 polarization, a tumor suppressor phenotype, provoking a delay in the

progression of NAFLD to HCC[25]. On the other hand, SNHG20 overexpression

induced M2 polarization, which was mediated by signal transducer and activator of

transcription-6 (STAT-6) pathway activation and facilitated hepatic tumorigenesis[25].

Of importance, obesity, as a common feature of NAFLD, modulates several of

the above-mentioned mechanisms, further promoting hepatic tumorigenesis.

Excessive adipose tissue and an obese phenotype constitute a chronic low-grade

inflammatory environment which seems to further promote HCC development as

obesity is closely associated with elevated leptin and diminished adiponectin levels

aggravating their actions[26-28]. High saturated diet leads to increased lipid storage in

the liver with subsequent increased de novo lipogenesis, production and

accumulation of ROS and elevated ER stress while obesity-induced insulin resistance

further facilitates HCC development through activation of the previously mentioned

oncogenic pathways[29,30]. Of note, new studies have highlighted the burdened effect

of obesity and metabolic dysfunction on both histone post-translational

modifications and chromatin modifiers, promoting dysregulated transcriptional

function. Particularly, the hepatic expression of sterol regulatory element-binding

protein-1, a major regulator of lipogenesis, and histone deacetylase 8 (HDAC8), a

chromatin modifier were significantly upregulated in a high fructose high



carbohydrate murine model[31]. More importantly, HDAC8 upregulation, via the

activation of β-catenin signaling and suppression of Wnt antagonists, led to hepatic

tumorigenesis in vivo, indicating the association of chromatin dysregulation with

NAFLD-associated HCC[31].
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