ISSN |
1949-8462 (online) |
Open Access |
This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/ |
Copyright |
© The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved. |
Article Reprints |
For details, please visit: http://www.wjgnet.com/bpg/gerinfo/247
|
Permissions |
For details, please visit: http://www.wjgnet.com/bpg/gerinfo/207
|
Publisher |
Baishideng Publishing Group Inc, 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA |
Website |
http://www.wjgnet.com |
Category |
Cardiac & Cardiovascular Systems |
Manuscript Type |
Retrospective Study |
Article Title |
Prediction of permanent pacemaker implantation after transcatheter aortic valve replacement: The role of machine learning
|
Manuscript Source |
Unsolicited Manuscript |
All Author List |
Pradyumna Agasthi, Hasan Ashraf, Sai Harika Pujari, Marlene Girardo, Andrew Tseng, Farouk Mookadam, Nithin Venepally, Matthew R Buras, Bishoy Abraham, Banveet K Khetarpal, Mohamed Allam, Siva K Mulpuru MD, Mackram F Eleid, Kevin L Greason, Nirat Beohar, John Sweeney, David Fortuin, David R Jr Holmes and Reza Arsanjani |
Funding Agency and Grant Number |
|
Corresponding Author |
Sai Harika Pujari, MBBS, N/A, N/A, Department of Internal Medicine, The Brooklyn Hospital Center, 121 Dekalb Avenue, Brooklyn, NY 11201, United States. spujari@tbh.org |
Key Words |
Transcatheter aortic valve replacement; Permanent pacemaker implantation; Machine learning |
Core Tip |
Atrioventricular block requiring permanent pacemaker (PPM) implantation is an important complication of transcatheter aortic valve replacement. Application of machine learning could potentially be used to predict pre-procedural risk for PPM. Machine learning was used to predict patients who are at risk of developing conduction abnormalities requiring PPM at 30 d and 1 year. Our random forest machine learning model using machine learning outperforms PPM risk score model in its predictive value. Brachiocephalic to annulus distance to height ratio is the highest weighted predictor of PPM implantation at both 30-d and 1-year, which has not been previously described in the literature. |
Publish Date |
2023-03-21 06:10 |
Citation |
Agasthi P, Ashraf H, Pujari SH, Girardo M, Tseng A, Mookadam F, Venepally N, Buras MR, Abraham B, Khetarpal BK, Allam M, MD SKM, Eleid MF, Greason KL, Beohar N, Sweeney J, Fortuin D, Holmes DRJ, Arsanjani R. Prediction of permanent pacemaker implantation after transcatheter aortic valve replacement: The role of machine learning. World J Cardiol 2023; 15(3): 95-105 |
URL |
https://www.wjgnet.com/1949-8462/full/v15/i3/95.htm |
DOI |
https://dx.doi.org/10.4330/wjc.v15.i3.95 |